cho a,b là hai số thực thỏa mãn a^2+b^2=a+b+ab. Tìm GTLN của M= a^3+b^3+2000
cho a,b là các số thực thỏa mãn a2+b2=a+b+ab. Tìm Max của M = a3+b3+2000
cho a,b là các số thỏa mãn \(a^2+b^2=1\)
Tìm GTLN của \(M=ab\sqrt{3}+a^2\)
\(M=4.\dfrac{a}{2}.\dfrac{b\sqrt{3}}{2}+a^2\le2\left(\dfrac{a^2}{4}+\dfrac{3b^2}{4}\right)+a^2=\dfrac{3}{2}\left(a^2+b^2\right)=\dfrac{3}{2}\)
\(M_{max}=\dfrac{3}{2}\) khi \(\left(a;b\right)=\left(\dfrac{\sqrt{3}}{2};\dfrac{1}{2}\right);\left(-\dfrac{\sqrt{3}}{2};-\dfrac{1}{2}\right)\)
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Cho biểu thức P=a4+b4-ab,với a,b là cá số thực thỏa mãn a2+b2+ab=3.Tìm GTLN và GTNN của P
#)Giải :
Ta có : \(P=a^4+b^4+2-2-ab\)
Áp dụng BĐT cô si, ta có :
\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1
\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1
Khi đó \(P\ge2a^2+2b^2-2-ab\)
\(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)
\(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)
Mặt khác \(a^2+b^2\ge2ab\)
Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)
\(\Rightarrow ab\le1\)(2)
Từ (1) và (2)
Ta có : \(P\ge4-3ab\ge4-3=1\)
Vậy P đạt GTNN là 1 khi a = b = 1
#~Will~be~Pens~#
Cho a,b,c thực dương thỏa mãn a^3/(a^2+ab+b^2)+b^3/(b^2+bc+c^2)+c^3/(c^2+ca+a^)=1.Tìm GTLN của BT:S=a+b+c
a,b,b là các số thực dương thỏa mãn a+b+c=3
Tìm GTLN của biểu thức P = 2(ab+bc+ac) - abc
\(a=b=c=1\rightarrow P=5\)ta se cm P=5 la gtln cua P that vay ta se cm
\(5p^3+27r\ge18pq\Leftrightarrow5p^3+27r-18pq\ge0\).theo bdt schur
\(LHS\ge5p^3+3p\left(4q-p^2\right)-18pq=2p\left(p^2-3q\right)\ge0\)
Vay \(P_{max}=5\leftrightarrow a=b=c=1\)
Đặt P = F(a;b;c).
Xét hiệu \(F\left(a;b;c\right)-F\left(t;t;c\right)=2\left(ab+bc+ca-t^2-2tc\right)+c\left(t^2-ab\right)\)
\(=2\left(ab-t^2\right)-c\left(ab-t^2\right)+2c\left(a+b-2t\right)\)
\(=2\left(ab-t^2\right)-c\left(ab-t^2\right)\)
\(=\left(ab-t^2\right)\left(2-c\right)\le0\) với \(t=\frac{a+b}{2}\). Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)\)
Ta sẽ chứng minh \(f\left(t;t;c\right)\le5\) hay \(2\left(t^2+2tc\right)-t^2c\le5\)
\(\Leftrightarrow\left(2-c\right)t^2+4tc-5\le0\). Thật vậy từ giả thiết suy ra \(c=3-2t\).Mặt khác do c > 0 và t > 0 nên \(0< t< \frac{3}{2}\)
Do đó ta cần chứng minh \(\left(2t-1\right)t^2+4t\left(3-2t\right)-5\le0\) với \(0< t< \frac{3}{2}\)
\(\Leftrightarrow\left(t-1\right)^2\left(2t-5\right)\le0\). BĐT này đúng với mọi \(0< t< \frac{3}{2}\)
P/s: Is it true?? Em mới học dồn biến nên ko chắc đâu..
cho hai số a và b thỏa mãn a2 + b2 = a + b + ab. Tìm GTLN của a3 + b3
\(a^2+b^2=a+b+ab\Leftrightarrow a+b=a^2+b^2-ab\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[-\left(a+b\right)\right]=-\left(a+b\right)^2\le0\)
Dấu "=" xảy ra khi (a+b)2=0 <=> a+b=0
<=> \(a^2+b^2-ab=0\Leftrightarrow\left(a+b\right)^2-3ab=0^2-3ab=-3ab=0\Leftrightarrow ab=0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
mà a+b=0 => a=b=0
Cho 2 số thực dương a, b thỏa mãn \(a^3+b^3\le1\). Tìm GTLN: \(A=a+4b\)
\(a^3+\dfrac{1}{9}+\dfrac{1}{9}\ge3\sqrt[3]{\dfrac{a^3}{81}}=\dfrac{a}{\sqrt[3]{3}}\)
\(b^3+\dfrac{8}{9}+\dfrac{8}{9}\ge3\sqrt[3]{\dfrac{64b^3}{81}}=\dfrac{4b}{\sqrt[3]{3}}\)
Cộng vế:
\(\dfrac{1}{\sqrt[3]{3}}\left(a+4b\right)\le a^3+b^3+2\le3\)
\(\Rightarrow a+4b\le3\sqrt[3]{3}\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(\dfrac{1}{\sqrt[3]{9}};\dfrac{2}{\sqrt[3]{9}}\right)\)
Giả sử a, b là hai số nguyên dương thay đổi thỏa mãn (ab+1)/(a+b)<3/2 hãy tìm GTLN của P= (a^3 * b^3 +1)/(a^3 +b^3
)
\(\frac{ab+1}{a+b}< \frac{3}{2}\Rightarrow2ab+2< 3a+3b\Rightarrow2ab+2-3a-3b< 0\)
\(\Leftrightarrow a\left(2b-3\right)+2-3b< 0\Rightarrow2a\left(2b-3\right)+4-6b< 0\)
\(\Leftrightarrow2a\left(2b-3\right)-3\left(2b-3\right)< 5\Leftrightarrow\left(2a-3\right)\left(2b-3\right)< 5\)
Giả sử \(a\le b\Rightarrow-1\le2a-3\le2b-3\)(vì a,b nguyên dương)
Nếu \(2a-3=-1\Rightarrow a=1\Rightarrow P=1\left(1\right)\)Nếu \(2a-3=1\Rightarrow a=2\)+)Nếu \(2b-3=1\Rightarrow b=2\Rightarrow P=\frac{65}{16}\left(2\right)\)
+)Nếu \(2b-3=3\Rightarrow b=3\Rightarrow P=\frac{31}{5}\left(3\right)\)
Vậy so sánh \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow P_{Max}=\frac{31}{5}\)