5. Cho đường tròn (O), cung AB có số đo 100°. Vẽ đường kính AOC . Tính số đo góc ACB.
Xét ΔOAB có OA=OB(=R)
nên ΔOAB cân tại O(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{OAB}=\dfrac{180^0-\widehat{AOB}}{2}\)(Số đo của một góc ở đáy trong ΔOAB cân tại O)
\(\Leftrightarrow\widehat{CAB}=\dfrac{180^0-100^0}{2}=\dfrac{80^0}{2}=40^0\)
Xét (O) có
ΔCAB nội tiếp đường tròn(C,A,B\(\in\)(O))
AC là đường kính(gt)
Do đó: ΔCAB vuông tại B(Định lí)
\(\Leftrightarrow\widehat{ACB}+\widehat{CAB}=90^0\)(Hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}+40^0=90^0\)
hay \(\widehat{ACB}=50^0\)
Vậy: \(\widehat{ACB}=50^0\)
Cho đường tròn (O) đường kính AB,vẽ góc ở tâm AOC=50° với C nằm trên (O) vẽ dây CD vuông góc với AB và dây DE song song với AB
a, Tính số đo cung nhỏ BE
b, Tính số đo cung CBE. Từ đó suy ra ba điểm C, O, E thẳng hàng
Cho đường tròn (O) đường kính AB, vẽ góc ở tâm A O C ^ = 50 0 với C nằm trên (O). Vẽ dây CD vuông góc với AB và dây DE song song với AB
a, Tính số đo cung nhỏ BE
b, Tính số đo cung CBE. Từ đó suy ra ba điểm C, O, E thẳng hàng
a, Tính được sđ B E ⏜ = 50 0
b, Chứng minh được sđ
C
B
E
⏜
=
180
0
=> C, O, E thẳng hàng (ĐPCM)
cho đường tròn tâm O đường kính AB .Vẽ góc ở tâm \(\widehat{AOC}\) =50 độ . Vẽ dây CD \(\perp\)AB và dây DE//AB
a)Tính số đo cung nhỏ BE
b)Tính số đo \(\stackrel\frown{CBE}\) từ đó suy ra 3 điểm C,O,E thẳng hàng
Tự vẽ hình
a) Do \(CD\) vuông góc \(AB\) nên \(AB\) là trung trực của \(CD\) (liên hệ giữa đường kính và dây cung)
\(\Rightarrow AC=AD\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}\)
Mà \(sđ\stackrel\frown{AC}=\stackrel\frown{AOC}=50^0\Rightarrow sđ\stackrel\frown{AD}=50^0\).
Do \(DE\) song song \(AB\)
\(sđ\stackrel\frown{BE}=sđ\stackrel\frown{AD}=50^0\Rightarrow\widehat{BOE}=sđ\stackrel\frown{BE}=50^0\).
b) Do \(B\in\stackrel\frown{CE}\Rightarrow sđ\stackrel\frown{CBE}=sđ\stackrel\frown{CB}+sđ\stackrel\frown{BE}\)
\(\Rightarrow sđ\stackrel\frown{CBE}=\widehat{COB}+\widehat{BOE}=180^0-\widehat{AOC}+\widehat{BOE}\)
\(\Rightarrow sđ\stackrel\frown{CBE}=180^0-50^0+50^0=180^0\)
\(\Rightarrow\) CE là đường kính
\(\Rightarrow\) C, O, E thẳng hàng.
Cho đường tròn tâm o đừng kính AB vẽ góc ở tâm AOC=50° với C nằm trên o vẽ dây CD vuông góc với AB và dây DE // AB.
a,tính số đo cung nhỏ BE
b, tính số đo cung CBE từ đó suy rs ba điểm C,O,E thẳng hàng
Cho đường tròn ( o;r ) có dây cung AB có độ dài băng R căn 2.Vẽ đường kính BC.Tính sin góc ACB và số đo các góc của tam giác ABC
Xét ΔOAB có OA^2+OB^2=AB^2
và OA=OB
nên ΔOAB vuông cân tại O
Xét ΔACB có
AO là đường trung tuyến, là đường cao
Do đó: ΔACB cân tại A
=>góc ACB+góc ABC=90 độ
=>góc ACB=45 độ
sin ACB=sin45=\(\dfrac{1}{\sqrt{2}}\)
cho đường tròn (O) , đường kính AB, vẽ góc ở tâm \(\widehat{AOC}=50^o\). Vẽ dây CD vuông góc vs AB và dây DE song song vs AB
a) tính số đo cung nhỏ EB
a) Ta có: AB//DE(gt)
CD⊥AB(gt)
Do đó: DE⊥CD(Định lí 2 từ vuông góc tới song song)
⇔\(\widehat{CDE}=90^0\)
Xét ΔCDE có \(\widehat{CDE}=90^0\)(cmt)
nên ΔCDE vuông tại D(Định nghĩa tam giác vuông)
⇔D nằm trên đường tròn đường kính CE
⇔C,D,E nằm trên đường tròn đường kính CE
mà C,D,E cùng nằm trên (O)(gt)
nên CE là đường kính của (O)
hay C,O,E thẳng hàng(đpcm)
Bài 7: Cho đường tròn (O;R), đường kính AB. Vẽ góc AOC bằng 1200
a) Tính độ dài cung AC theo R
b) Lấy điểm I thuộc cung lớn AC ( I không trùng với A và C). Tính số đo góc CIB
Giúp mình bài này với ạ, cảm ơn