Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn nhật huyền phương
Xem chi tiết
Akai Haruma
6 tháng 1 2024 lúc 17:58

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

Ngữ Gia Bảo
Xem chi tiết

A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)

A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)

A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\))  + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))

A = 0 + 0  +0  + 0+ ... + 0

A = 0

Trần Khánh nguyên
Xem chi tiết
Trần Khánh nguyên
25 tháng 12 2023 lúc 23:27

Giúp mình vs ạ

A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + ... - 2023 + 2024 + 2025

Xét dãy số: 1; 2; 3; 4;..; 2025 là dãy số cách đều với khoảng cách là:

                   2  - 1  = 1

Số số hạng của dãy số trên là: ( 2025 - 1) : 1  + 1 = 2025

                  Vì 2025 : 4 = 506 dư 1 

Nhóm 4 số hạng liên tiếp của A vào nhau thì được A là tổng của 506 nhóm và 2025 khi đó

A =(1-2-3+4)+(5 - 6 - 7 + 8) +...+(2021-2022-2023+2024) + 2025

A = 0 + 0 +...+ 0 + 2025

A = 2025

           

 

          

 

Muichirou- san
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 10 2023 lúc 21:33

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

Nguyễn Mai Anh
Xem chi tiết
Akai Haruma
15 tháng 10 2023 lúc 19:15

Bạn xem lại phương trình ban đầu có đúng không vậy?

Xem chi tiết
Akai Haruma
15 tháng 7 2023 lúc 17:26

Lời giải:
Ta có:
$(x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=2023.\frac{2024}{2023}$

$\Leftrightarrow 1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1=2024$

$\Leftrightarrow 3+\frac{x+z}{y}+\frac{y+z}{x}+\frac{x+y}{z}=2024$

$\Leftrightarrow 3+B=2024$

$\Leftrightarrow B=2021$

Xem chi tiết
Akai Haruma
15 tháng 7 2023 lúc 17:28

Hoàng Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 12 2023 lúc 12:26

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

BÙI VĂN LỰC
Xem chi tiết
Dương Thu Thảo
Xem chi tiết
Thầy Hùng Olm
2 tháng 5 2023 lúc 21:20

B = \(1-\dfrac{1}{2025}\)   \(A=1-\dfrac{1}{2024}\)

Vì \(\dfrac{1}{2025}< \dfrac{1}{2024}\)

Nên B>A

Nguyễn An Ninh
2 tháng 5 2023 lúc 21:26

Ta có :

\(\dfrac{2023}{2024}\)=\(\dfrac{2024-1}{2024}\)=\(\dfrac{2024}{2024}\)-\(\dfrac{1}{2024}\)=1-\(\dfrac{1}{2024}\)

\(\dfrac{2024}{2025}\)=\(\dfrac{2025-1}{2025}\)=\(\dfrac{2025}{2025}\)-\(\dfrac{1}{2025}\)=1=\(\dfrac{1}{2025}\)

Ta thấy: \(\dfrac{1}{2024}\) lớn hơn \(\dfrac{1}{2025}\)

Nên : \(\dfrac{2023}{2024}\) lớn hơn \(\dfrac{2024}{2025}\)

⇒A lớn hơn B

 

Trần Thị Bắc 08_1
2 tháng 5 2023 lúc 21:19

>