Chứng minh : \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}=4\)
Chứng minh đẳng thức sau:
\(\frac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}}-\sqrt[3]{a^2}}+\sqrt[3]{a}}=-\sqrt[3]{a-1}\)
Chứng minh bất đẳng thức sau:
\(\left(\sqrt[3]{\sqrt{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}}\right).\sqrt[3]{\sqrt{5-2}}-2,1< 0\)
Chứng minh:
\(\dfrac{a+\sqrt{2+\sqrt{5}}.\sqrt{\sqrt{9-4\sqrt{5}}}}{\sqrt[3]{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}}}-\sqrt[3]{a^2}+\sqrt[3]{a}}=-\sqrt[3]{a}-1\)
Chứng minh : \(\sqrt{9-4\sqrt{6}}-\sqrt{5}\left(1-\sqrt{5}\right)=3\)
Sửa đề: \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\left(1-\sqrt{5}\right)\)
\(=\sqrt{5}-2-\sqrt{5}+5\)
=3
Cho \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\). Chứng minh rằng \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
9-\(4\sqrt{5}=5-4\sqrt{5}+4=\left(\sqrt{5}-2\right)^2\\ \)
=>\(\sqrt{9-4\sqrt{5}}=\left(2-\sqrt{5}\right)\)=> điều cần phải chứng minh
Chứng minh :
a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
b) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
Câu a thì c/m được câu b đề yêu cầu gì thế.
a) Xét VP được :
\(\left(\sqrt{5}+2\right)^2\) sử dụng hàng đẳng thức số 1 :
\(\left(\sqrt{5}+2\right)^2=\sqrt{5}^2+2\cdot\sqrt{5}\cdot2+2^2=5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)
Vậy \(\left(\sqrt{5}+2\right)^2=9+4\sqrt{5}\)
a) \(\sqrt{9+4\sqrt{5}}=\left(\sqrt{5}+2\right)^2\)
Ta biến đổi vế phải :
\(VP=\left(\sqrt{5}+2\right)^2=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2\) = \(5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)
=> Ta có VT= VP <=> VP = VT
b) Thiếu đề =.= sao làm
b,
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
\(=\sqrt{4-2.2\sqrt{5}+5}-\sqrt{5}\)
\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)
\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)
\(=\sqrt{5}-2-\sqrt{5}=-2\) ( 2 < \(\sqrt{5}\))
mấy bác tranh câu a e làm câu b
Chứng minh
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\frac{4}{\sqrt{x-3}}-\frac{9}{\sqrt{y-5}}-\frac{25}{\sqrt{z-4}}\)
Chứng minh
a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
b)\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
Help me plsssssss
\(a,VT=9+4\sqrt{5}=\sqrt{5^2}+2.2\sqrt{5}+2^2=\left(\sqrt{5}+2\right)^2=VP\left(dpcm\right)\)
\(b,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\Leftrightarrow\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)
Ta có : \(VT=\sqrt{9-4\sqrt{5}}=\sqrt{\sqrt{5^2}-2.2\sqrt{5}+2^2}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|=\sqrt{5}-2=VP\left(dpcm\right)\)
1.Chứng minh
\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
Chứng minh biểu thức không thuộc x
\(K=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}\cdot\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}\cdot\sqrt{2+\sqrt{5}}+x}}\)
Chứng minh biểu thức không phụ thuộc vào x
\(K=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}\cdot\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}\cdot\sqrt{2+\sqrt{5}}+\sqrt{x}}\)
\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(\sqrt{3}+2\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{\sqrt{5}+2}+\sqrt{x}}\\ =\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+1-\sqrt{x}=1\)