Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

Những câu hỏi liên quan
Hân Dung Vũ
Xem chi tiết
Thai Nguyen
Xem chi tiết
NoName
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2023 lúc 21:40

Sửa đề: \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\left(1-\sqrt{5}\right)\)

\(=\sqrt{5}-2-\sqrt{5}+5\)

=3

 

See you again
Xem chi tiết
Nguyễn Ngọc Ánh
12 tháng 6 2019 lúc 21:33

9-\(4\sqrt{5}=5-4\sqrt{5}+4=\left(\sqrt{5}-2\right)^2\\ \)

=>\(\sqrt{9-4\sqrt{5}}=\left(2-\sqrt{5}\right)\)=> điều cần phải chứng minh 

2k3 Hatrang
Xem chi tiết
Đức Minh
16 tháng 7 2017 lúc 10:22

Câu a thì c/m được câu b đề yêu cầu gì thế.

a) Xét VP được :

\(\left(\sqrt{5}+2\right)^2\) sử dụng hàng đẳng thức số 1 :

\(\left(\sqrt{5}+2\right)^2=\sqrt{5}^2+2\cdot\sqrt{5}\cdot2+2^2=5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)

Vậy \(\left(\sqrt{5}+2\right)^2=9+4\sqrt{5}\)

thuongnguyen
16 tháng 7 2017 lúc 10:23

a) \(\sqrt{9+4\sqrt{5}}=\left(\sqrt{5}+2\right)^2\)

Ta biến đổi vế phải :

\(VP=\left(\sqrt{5}+2\right)^2=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2\) = \(5+4\sqrt{5}+4=9+4\sqrt{5}=VT\)

=> Ta có VT= VP <=> VP = VT

b) Thiếu đề =.= sao làm

Như Khương Nguyễn
16 tháng 7 2017 lúc 10:29

b,

\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{4-2.2\sqrt{5}+5}-\sqrt{5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}=-2\) ( 2 < \(\sqrt{5}\))

mấy bác tranh câu a e làm câu b

Mạc Hy
Xem chi tiết
Tung Linhh
15 tháng 10 2020 lúc 12:55
https://i.imgur.com/CikC4Vi.jpg
Khách vãng lai đã xóa
An Đinh Khánh
Xem chi tiết
YangSu
25 tháng 6 2023 lúc 15:42

\(a,VT=9+4\sqrt{5}=\sqrt{5^2}+2.2\sqrt{5}+2^2=\left(\sqrt{5}+2\right)^2=VP\left(dpcm\right)\)

\(b,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

\(\Leftrightarrow\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)

Ta có : \(VT=\sqrt{9-4\sqrt{5}}=\sqrt{\sqrt{5^2}-2.2\sqrt{5}+2^2}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|=\sqrt{5}-2=VP\left(dpcm\right)\)

Trọng Hà Bùi
Xem chi tiết
Duong Thi Nhuong TH Hoa...
Xem chi tiết
Duong Thi Nhuong TH Hoa...
Xem chi tiết
Bùi Quang Dũng
7 tháng 6 2017 lúc 3:19

\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(\sqrt{3}+2\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{\sqrt{5}+2}+\sqrt{x}}\\ =\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+1-\sqrt{x}=1\)