cho tam giác ABC vuông tại B.Tia phân giác của góc A cắt cạnh BC tại D.Trên tia AC lấy điểm H sao cho AH = AB.Chứng minh rằng DH vuông góc với AC
Cho tam giác ABC vuông tại A,vẽ AH vuông góc BC(H thuộc BC),tia phân giác góc HAC cắt BC taị D.Trên cạnh AC lấy điểm E sao cho AH=AE.
a/Chứng minh DH=DE và DC>DH
b/AD là đường trung trực của H
c/Chứng minh tam giác ABD cân.
d/ Gọi I là giao điểm của AD và HE.Chứng minh rằng AC-AH>IC-IH
a: Xét ΔAHD và ΔAED có
AH=AE
góc HAD=góc EAD
AD chung
=>ΔAHD=ΔAED
=>DH=DE và góc AED=góc AHD=90 độ
DH=DE
DE<DC
=>DH<DC
b: AH=AE
DH=DE
=>AD là trung trực của HE
c: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>ΔBAD cân tại B
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của gpc1 ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm của DH. Chứng minh rằng: A, M, K thẳng hàng
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H.
a) Chứng minh: tam giác ABC = tam giác EBD và AD = ED
b) Chứng minh: AH // DE
c) Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm của đoạn thẳng DH. Chứng minh rằng: A, M, K thẳng hàng
Bài 6 : Cho ∆ABC vuông tại A, vẽ AH vuông góc với BC ( H BC), tia phân giác của góc HAC cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AH = AE.
a) Chứng minh rằng: DH = DE và DC > DH.
b) Chứng minh AD là đường trung trực của HE.
c) Chứng minh tam giác ABD cân.
d) tam giác ABC có thêm điều kiện gì thì tam giác ABD đều.
a: Xét ΔAHD và ΔAED có
AH=AE
\(\widehat{HAD}=\widehat{EAD}\)
AD chung
DO đó: ΔAHD=ΔAED
Suy ra: DH=DE
Ta có: DH=DE
mà DE<DC
nên DH<DC
b: Ta có: AH=AE
nên A nằm trên đường trung trực của HE(1)
Ta có: DH=DE
nên D nằm trên đường trung trực của HE(2)
Từ (1) và (2) suy ra AD là đường trung trực của HE
c: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{CAD}=\widehat{HAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
hay ΔBDA cân tại B
d: Để ΔBDA đều thì \(\widehat{B}=60^0\)
Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt cạnh BC tại H. Lấy điểm D bất kì trên AH. Chứng minh :
a) Tam giác ADB = tam giác ADC
b) DH là tia phân giác của góc BDC
c) AH vuông góc với BC
a: Xét ΔADB và ΔADC có
AD chung
góc BAD=góc CAD
AB=AC
=>ΔABD=ΔACD
b: Xét ΔDHB và ΔDHC có
DH chung
HB=HC
DB=DC
=>ΔDHB=ΔDHC
=>góc BDH=góc CDH
=>DH là phân giác của góc BDC
c: ΔABC cân tại A
mà AH là phân giác
nên AH vuông góc CB
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm H sao cho BH=BA. Chứng minh DH vuông góc BC
Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD
=>\(\widehat{BAD}=\widehat{BHD}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BHD}=90^0\)
=>DH\(\perp\)HB
=>DH\(\perp\)BC
Bài 1: Cho ∆ABC vuông tại B. Tia phân giác góc A cắt cạnh BC tại D. Trên tia AC lấy điểm H sao cho AH=AB a) Chứng minh: ∆ABD = ∆AHD. b) Chứng minh: DH vuông góc với AC
a: Xét ΔABD và ΔAHD có
AB=AH
\(\widehat{BAD}=\widehat{HAD}\)
AD chung
Do đó: ΔABD=ΔAHD
b: Ta có: ΔABD=ΔAHD
\(\Leftrightarrow\widehat{ABD}=\widehat{AHD}\)
hay DH\(\perp\)AC
Bài 1: Cho ∆ABC vuông tại B. Tia phân giác góc A cắt cạnh BC tại D. Trên tia AC lấy điểm H sao cho AH=AB a) Chứng minh: ∆ABD = ∆AHD. b) Chứng minh: DH vuông góc với AC
a: Xét ΔABD và ΔAHD có
AB=AH
\(\widehat{BAD}=\widehat{HAD}\)
AD chung
Do đó: ΔABD=ΔAHD
Bài 9: Cho ∆ABC vuông tại A, vẽ AH vuông góc với BC ( H∈ BC), tia phân giác của góc
HAC cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AH = AE.
a) Chứng minh rằng: DH = DE và DC > DH.
b) Chứng minh AD là đường trung trực của HE.
c) Chứng minh tam giác ABD cân.
d) Gọi I là giao điểm của AD và HE. Chứng minh rằng AC – AH > IC – IH.
a: Xét ΔAHD và ΔAED có
AH=AE
góc HAD=góc EAD
AD chung
=>ΔAHD=ΔAED
=>DH=DE và góc AED=góc AHD=90 độ
ΔCED vuông tại E
=>ED<DC
=>DH<DC
b: AH=AE
DH=DE
=>AD là trung trực của HE
c: góc BAD+góc CAD=90 độ
góc BDA+góc HAD=90 độ
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>ΔBAD cân tại B