Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2023 lúc 20:18

a: \(\left\{{}\begin{matrix}\left(\sqrt{3}+1\right)x+\left(\sqrt{3}-1\right)y=\sqrt{3}\\2\sqrt{3}x-2y=3\sqrt{3}+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(\sqrt{3}+1\right)^2\cdot x+\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)y=\sqrt{3}\left(\sqrt{3}+1\right)\\2\sqrt{3}x-2y=3\sqrt{3}+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(4+2\sqrt{3}\right)+2y=3+\sqrt{3}\\2\sqrt{3}\cdot x-2y=3\sqrt{3}+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(4+2\sqrt{3}+2\sqrt{3}\right)=3+\sqrt{3}+3\sqrt{3}+1\\2\sqrt{3}\cdot x-2y=3\sqrt{3}+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\2y=2\sqrt{3}-3\sqrt{3}-1=-\sqrt{3}-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\y=\dfrac{-\sqrt{3}-1}{2}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}x\sqrt{3}+y\sqrt{2}=1\\x\sqrt{2}+y\sqrt{3}=\sqrt{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\sqrt{6}+2y=\sqrt{2}\\x\sqrt{6}+3y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y-3y=\sqrt{2}-3\\x\sqrt{3}+y\sqrt{2}=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-y=\sqrt{2}-3\\x\sqrt{3}=1-y\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3-\sqrt{2}\\x\sqrt{3}=1-\sqrt{2}\left(3-\sqrt{2}\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=3-\sqrt{2}\\x\sqrt{3}=1-3\sqrt{2}+2=3-3\sqrt{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=3-\sqrt{2}\\x=\sqrt{3}-\sqrt{6}\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=\left(x+1\right)\left(y-3\right)\\\left(x-5\right)\left(y+4\right)=\left(x-4\right)\left(y+1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}xy-2y-y+2=xy-3x+y-3\\xy+4x-5y-20=xy+x-4y-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x-y+2=-3x+y-3\\4x-5y-20=x-4y-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x-y+3x-y=-3-2=-5\\4x-5y-x+4y=-4+20\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2y=-5\\3x-y=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-6y=-15\\3x-y=16\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-5y=-15-16=-31\\x-2y=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{31}{5}\\x=-5+2y=-5+\dfrac{62}{5}=\dfrac{37}{5}\end{matrix}\right.\)

ĐỖ NV1
Xem chi tiết
Akai Haruma
2 tháng 5 2023 lúc 15:49

Bài 1:

Gọi biểu thức trên là $P$
\(P=\frac{\sqrt{x}(\sqrt{x}-3)+3(\sqrt{x}+3)}{(\sqrt{x}+3)(\sqrt{x}-3)}.\frac{x-9}{\sqrt{x}-3}\)

\(=\frac{x+9}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{(\sqrt{x}-3)(\sqrt{x}+3)}{\sqrt{x}-3}=\frac{x+9}{\sqrt{x}-3}\)

 

Akai Haruma
2 tháng 5 2023 lúc 15:50

Bài 2:
Để $(d)$ và $(d')$ song song với nhau thì:
$m^2-3=2m$

$\Leftrightarrow m^2-2m-3=0$

$\Leftrightarrow (m+1)(m-3)=0$

$\Leftrightarrow m+1=0$ hoặc $m-3=0$

$\Leftrightarrow m=-1$ hoặc $m=3$

Bùi nguyễn Hoài Anh
Xem chi tiết
Thắng Nguyễn
5 tháng 3 2016 lúc 19:41

ơ 2 cái này là 1 bài à 

Bùi nguyễn Hoài Anh
5 tháng 3 2016 lúc 19:48

uk, giải hệ mà

Thắng Nguyễn
5 tháng 3 2016 lúc 19:48

áp dụng BĐT AM-GM dạng \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) ta có \(\frac{\sqrt{x^2+4y^2}}{2}\ge\frac{x+2y}{2}\)

Mà \(x^2+4y^2\ge4xy\) theo BĐT AM-GM 

=>\(x^2+4y^2=4xy\Rightarrow x=2y\).Thay 2y=x vào pt đầu tiên ta được

\(x^4-x^3+3x^2-2x-1=0\Leftrightarrow\left(x-1\right)\left(x^3+3x+1\right)=0\)

TH1:x-1=0

=>x=0

TH2:x3+3x+1=0

bạn tự giải được ko

Nguyễn Diệu Hương
Xem chi tiết
Thành Trương
12 tháng 5 2018 lúc 20:51

$a) \sqrt{x - 3} = 5$

$\Leftrightarrow x - 3 = 25$

$\Leftrightarrow x = 25 + 3$

$\Leftrightarrow x = 28$

Vậy tập nghiệm của phương trình: $S = {28}$

$b) \sqrt{2x + 1} = 3$

$\Leftrightarrow 2x + 1 = 9$

$\Leftrightarrow 2x = 9 - 1$

$\Leftrightarrow 2x = 8$

$\Leftrightarrow x = \frac{8}{2}$

$\Leftrightarrow x = 4$

Vậy tập nghiệm của phương trình: $S = {4}$

Thành Trương
12 tháng 5 2018 lúc 20:52

$a) \sqrt{x - 3} = 5$

$\Leftrightarrow x - 3 = 25$

$\Leftrightarrow x = 25 + 3$

$\Leftrightarrow x = 28$

Vậy tập nghiệm của phương trình: S={28}

$b) \sqrt{2x + 1} = 3$

$\Leftrightarrow 2x + 1 = 9$

$\Leftrightarrow 2x = 9 - 1$

$\Leftrightarrow 2x = 8$

$\Leftrightarrow x = \frac{8}{2}$

$\Leftrightarrow x = 4$

Vậy tập nghiệm của phương trình: S={4}

Zy Zy
12 tháng 5 2018 lúc 22:17

a,

= 5

⇔ x – 3 = 25

⇔ x = 28

Vậy x = 28 là giá trị cần tìm

b)

=3

⇔ 2x + 1 = 9

⇔ 2x = 8

⇔ x = 4

Vậy x = 4 là giá trị cần tìm

#ZyZy

Đinh Thuận
Xem chi tiết
Đàm Tùng Vận
Xem chi tiết
ILoveMath
30 tháng 1 2022 lúc 17:56

undefined

Đàm Tùng Vận
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 1 2022 lúc 19:02

ĐKXĐ: \(x\ne\pm1\)

\(\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^3+3}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=x^3+3\)

\(\Leftrightarrow4x=x^3+3\)

\(\Leftrightarrow x^3-4x+3=0\)

\(\Leftrightarrow x^3-x^2+x^2-x-3x+3=0\)

\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x^2+x-3=0\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{-1\pm\sqrt{13}}{2}\)

Đàm Tùng Vận
Xem chi tiết
ILoveMath
19 tháng 1 2022 lúc 20:57

\(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-x\)

\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{2x+1}{6}=\dfrac{x}{6}-\dfrac{6x}{6}\)

\(\Leftrightarrow2x-2x+1=x-6x\)

\(\Leftrightarrow1=-5x\)

\(\Leftrightarrow x=\dfrac{-1}{5}\)

đẹp zai Thịnh
Xem chi tiết
Nam bồ Linh
3 tháng 12 2021 lúc 19:34

chịu ko nhớ

Khách vãng lai đã xóa
nhat nam huynh
Xem chi tiết
Nguyễn Hưng Phát
4 tháng 7 2018 lúc 10:15

ĐK:\(x-3\ge0\Leftrightarrow x\ge3\)

\(\sqrt{x-3}-1=1\)\(\Leftrightarrow\sqrt{x-3}=2\)

\(\Rightarrow\left(\sqrt{x-3}\right)^2=2^2\Leftrightarrow x-3=4\)

\(\Leftrightarrow x=7\)

Pt có nghiệm duy nhất x=7