Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Trâm
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
24 tháng 5 2016 lúc 5:52

ĐK :0≤b≤9;0<a,c≤9;100≤n2−1≤999⇒11≤n≤31;n∈N0≤b≤9;0<a,c≤9;100≤n2−1≤999⇒11≤n≤31;n∈N

Trừ từng vế pt (1) và (2) ta có 

99(a−c)=4n−599(a−c)=4n−5 Vì (a−c)(a−c) là số tự nhiên nên 4n−54n−5 chia hết cho 99 mà 39≤4n−5≤11939≤4n−5≤119 

⇒4n−5=99⇒n=26⇒abc=262−1=675⇒4n−5=99⇒n=26⇒abc=262−1=675 (nhận) 

Thử lại: cba=576=242=(26−2)2cba=576=242=(26−2)2 ( đúng) 

masu konoichi
Xem chi tiết
Tống Lê Kim Liên
17 tháng 11 2015 lúc 12:15

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

Phạm Thuỳ Linh
Xem chi tiết
Trần Đình Thiên
28 tháng 7 2023 lúc 15:44

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

Nguyễn Đức Trí
28 tháng 7 2023 lúc 15:45

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

Nguyễn Đức Trí
28 tháng 7 2023 lúc 15:53

Bài 2

\(\left(n-2\right)\left(n^2+n-5\right)\) là số nguyên tố khi n-2=1, suy ra n=3.

Đào Linh
Xem chi tiết

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 15:33

2: A=n^2+3n+2=(n+1)(n+2)

Để A là số nguyên tố thì n+1=1 hoặc n+2=2

=>n=0

nguyen trong hieu
Xem chi tiết
GNam
Xem chi tiết
Akai Haruma
18 tháng 7 2023 lúc 22:52

Lời giải:

Xét modun $3$ của $n$ thì ta dễ dàng thấy $n^2+n+2$ không chia hết cho $3$ với mọi $n$. Do đó $n^2+n+2$ nếu thỏa mãn đề thì chỉ có thể là tích 2 số tự nhiên liên tiếp (nếu từ 3 số tự nhiên liên tiếp thì sẽ chia hết cho 3) 

Đặt $n^2+n+2=a(a+1)$ với $a\in\mathbb{N}$

$\Leftrightarrow 4n^2+4n+8=4a^2+4a$

$\Leftrightarrow (2n+1)^2+8=(2a+1)^2$
$\Leftrightarrow 8=(2a+1)^2-(2n+1)^2=(2a-2n)(2a+2n+2)$

$\Leftrightarrow 2=(a-n)(a+n+1)$

Hiển nhiên $a+n+1> a-n$ và $a+n+1>0$ với mọi $a,n\in\mathbb{N}$ nên:

$a+n+1=2; a-n=1$

$\Rightarrow n=0$ (tm)

Huỳnh Tấn Anh Khoa
Xem chi tiết
Nguyễn Ngọc Quý
18 tháng 11 2015 lúc 9:22

n2 + 3 chia hết cho n + 2

n + 2 chia hết cho n + 2

=> n(n + 2) chia hết cho n + 2

n2 + 2n chia hết cho n + 2

=> (n2 + 2n - n2 + 3) chia hết cho n + 2

2n - 3 chia hết cho n + 2

n + 2 chia hết cho n + 2

=> 2(n + 2) chia hết cho n + 2

2n + 4 chia hết cho n + 2

=>(2n + 4 - 2n + 3) chia hết cho n + 2

7 chia hết cho n + 2

n + 2 thuộc U(7) = {-7;-1;1;7}

n + 2 = -7 => n = -9

n + 2 = -1 => n = -3

n + 2 = 1 => n = -1

n + 2 =  7 => n = 5

Mà n là số tự nhiên nên n = 5     

 

Nguyễn Huỳnh Ái Nhi
18 tháng 11 2015 lúc 9:24

n^2+3 chia hết cho n+2

=>(n^2+4n+4)-4n-1 chia hết cho n+2

=>(n+2)^2 -(4n+1) chia hết cho n+2

=>4n+1 chia hết cho n+2(vì (n+2)^2 chia hết cho n+2)

=>4(n+2)-7chia hết cho n+2

=>7 chia hết cho n+2

=>n+2 thuộc Ư(7)

=>n+2=(1,7)

=> n=-1;5 mà n là số tự nhiên nên n=5

đáp số n=5

Khuất Thị Kim Chi
21 tháng 10 2017 lúc 14:54

mk không hiểu cách làm này cho lắm có ai có cách giải khác không ??????????????

Minh Ngô Quang
Xem chi tiết
Akai Haruma
13 tháng 12 2023 lúc 17:13

Lời giải:

Để $p=(n-2)(n^2+n-5)$ là số nguyên tố thì bản thân 1 trong 2 thừa số $n-2, n^2+n-5$ là số nguyên tố và số còn lại bằng 1.

TH1: $n-2=1\Rightarrow n=3$. Khi đó: $p=7$ là số nguyên tố (thỏa mãn) 

TH2: $n^2+n-5=1\Rightarrow n^2+n-6=0\Rightarrow (n-2)(n+3)=0$

$\Rightarrow n=2$ 

$\Rightarrow p=0$ không là snt (loại) 

Vậy $n=3$

Sea On
Xem chi tiết