Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Quỳnh Anh
Xem chi tiết
Cristiano Nguyễn Việt An
Xem chi tiết
Nguyễn Xuân
Xem chi tiết
Hà Mi
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 11:09

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

hiền hà
Xem chi tiết
Nguyễn Linh Chi
17 tháng 12 2019 lúc 9:55

Đặt: d: y = ( m+1 ) x + 3

+) TH1: m = -1

=> d: y = 3

=> Khoảng cách của gốc tọa độ tới d là: 3 (1)

+) Th2: m khác -1.

Giao điểm của d với Ox là : A ( \(-\frac{3}{m+1};0\))

=> \(OA=\left|\frac{3}{m+1}\right|\)

Giao điểm của d với Oy là: \(B\left(0;3\right)\)

=> OB = 3.

Kẻ OH vuông với d tại H => AH  là khoảng cách từ O tới d

Xét tam giác OAB vuông tại O. Có OH là đường cao:

=> \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{\left(m+1\right)^2}{9}+\frac{1}{9}>\frac{1}{9}\)vì m khác 1 => \(\left(m+1\right)^2>0\)

=> \(OH< 3\)

=> Khoảng cách từ gốc tọa độ đến d nhỏ hơn 3 (2)

Từ (1); (2) Khoảng cách từ O đến d có giá trị lớn nhất là 3 đạt tại m = -1.

Khách vãng lai đã xóa
Nguyễn Ngọc Quân
16 tháng 10 2020 lúc 21:05

len google bn oi

Khách vãng lai đã xóa
Nguyễn Thành Công
Xem chi tiết
Hương Phạm
Xem chi tiết
Phan Quỳnh Như
Xem chi tiết
Kimian Hajan Ruventaren
6 tháng 1 2021 lúc 15:26

a) Để hàm số trên đồng biến thì a>0  <=> m+5>0  <=> m>-5

b) thay A(2;3) vào đồ thị hs ta đc 3=(m+5).2+2m-10  =>m=3/4

ngunhubo
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 1 2021 lúc 19:34

Để hàm số y=(1-m)x+1 là hàm số bậc nhất thì \(1-m\ne0\)

\(\Leftrightarrow m\ne1\)

a) Để hàm số y=(1-m)x+1 đồng biến trên R thì 1-m>0

\(\Leftrightarrow-m>-1\)

hay m<1

Kết hợp ĐKXĐ, ta được: m<1

Vậy: Để hàm số y=(1-m)x+1 đồng biến trên R thì m<1

c)

Thay m=2 vào hàm số y=(1-m)x+1, ta được:

y=(1-2)x+1

\(\Leftrightarrow y=-x+1\)Gọi A(xA,yA) và B(xB,yB) lần lượt là giao điểm của đồ thị hàm số y=-x+1 với trục Ox và trục Oy

Vì A(xA,yA) là giao điểm của đồ thị hàm số y=-x+1 với trục Ox nên yA=0

Thay y=0 vào hàm số y=-x+1, ta được:

-x+1=0

\(\Leftrightarrow-x=-1\)

hay x=1

Vậy: A(1;0)

Vì B(xB,yB) là giao điểm của đồ thị hàm số y=-x+1 với trục Oy nên xB=0

Thay x=0 vào hàm số y=-x+1, ta được:

y=-0+1=1

Vậy: B(0;1)

Độ dài đoạn thẳng OB là: 

\(OB=\sqrt{\left(x_O-x_B\right)^2+\left(y_O-y_B\right)^2}\)

\(\Leftrightarrow OB=\sqrt{\left(0-0\right)^2+\left(0-1\right)^2}=1\)(đvđd)

Độ dài đoạn thẳng OA là:

\(OB=\sqrt{\left(x_O-x_A\right)^2+\left(y_O-y_A\right)^2}\)

\(\Leftrightarrow OB=\sqrt{\left(0-1\right)^2+\left(0-0\right)^2}=1\)(đvđd)

Độ dài đoạn thẳng AB là:

\(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\)

\(\Leftrightarrow AB=\sqrt{\left(1-0\right)^2+\left(0-1\right)^2}=\sqrt{2}\)(đvđd)

Ta có: \(AB^2=\left(\sqrt{2}\right)^2=2\)

\(OA^2+OB^2=1^2+1^2=2\)

Do đó: \(AB^2=OA^2+OB^2\)(=2)

Xét ΔOAB có \(AB^2=OA^2+OB^2\)(cmt)

nên ΔOAB vuông tại O(Định lí Pytago đảo)

Kẻ OH⊥AB tại H

⇒OH là khoảng cách từ O đến (d)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAB vuông tại O có OH là đường cao ứng với cạnh huyền AB, ta được:

\(OH\cdot AB=OA\cdot OB\)

\(\Leftrightarrow OH\cdot\sqrt{2}=1\cdot1=1\)

hay \(OH=\dfrac{\sqrt{2}}{2}\)(đvđd)

Vậy: Khoảng cách từ O đến (d) là \(OH=\dfrac{\sqrt{2}}{2}\)