Để hàm số y=(1-m)x+1 là hàm số bậc nhất thì \(1-m\ne0\)
\(\Leftrightarrow m\ne1\)
a) Để hàm số y=(1-m)x+1 đồng biến trên R thì 1-m>0
\(\Leftrightarrow-m>-1\)
hay m<1
Kết hợp ĐKXĐ, ta được: m<1
Vậy: Để hàm số y=(1-m)x+1 đồng biến trên R thì m<1
c)
Thay m=2 vào hàm số y=(1-m)x+1, ta được:
y=(1-2)x+1
\(\Leftrightarrow y=-x+1\)Gọi A(xA,yA) và B(xB,yB) lần lượt là giao điểm của đồ thị hàm số y=-x+1 với trục Ox và trục Oy
Vì A(xA,yA) là giao điểm của đồ thị hàm số y=-x+1 với trục Ox nên yA=0
Thay y=0 vào hàm số y=-x+1, ta được:
-x+1=0
\(\Leftrightarrow-x=-1\)
hay x=1
Vậy: A(1;0)
Vì B(xB,yB) là giao điểm của đồ thị hàm số y=-x+1 với trục Oy nên xB=0
Thay x=0 vào hàm số y=-x+1, ta được:
y=-0+1=1
Vậy: B(0;1)
Độ dài đoạn thẳng OB là:
\(OB=\sqrt{\left(x_O-x_B\right)^2+\left(y_O-y_B\right)^2}\)
\(\Leftrightarrow OB=\sqrt{\left(0-0\right)^2+\left(0-1\right)^2}=1\)(đvđd)
Độ dài đoạn thẳng OA là:
\(OB=\sqrt{\left(x_O-x_A\right)^2+\left(y_O-y_A\right)^2}\)
\(\Leftrightarrow OB=\sqrt{\left(0-1\right)^2+\left(0-0\right)^2}=1\)(đvđd)
Độ dài đoạn thẳng AB là:
\(AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\)
\(\Leftrightarrow AB=\sqrt{\left(1-0\right)^2+\left(0-1\right)^2}=\sqrt{2}\)(đvđd)
Ta có: \(AB^2=\left(\sqrt{2}\right)^2=2\)
\(OA^2+OB^2=1^2+1^2=2\)
Do đó: \(AB^2=OA^2+OB^2\)(=2)
Xét ΔOAB có \(AB^2=OA^2+OB^2\)(cmt)
nên ΔOAB vuông tại O(Định lí Pytago đảo)
Kẻ OH⊥AB tại H
⇒OH là khoảng cách từ O đến (d)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔOAB vuông tại O có OH là đường cao ứng với cạnh huyền AB, ta được:
\(OH\cdot AB=OA\cdot OB\)
\(\Leftrightarrow OH\cdot\sqrt{2}=1\cdot1=1\)
hay \(OH=\dfrac{\sqrt{2}}{2}\)(đvđd)
Vậy: Khoảng cách từ O đến (d) là \(OH=\dfrac{\sqrt{2}}{2}\)