Chứng minh định lý:
Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại.
Vẽ hình, viết giả thiết, kết luận bằng kí hiệu và chứng minh định lí: " Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng sẽ vuông góc với đường thẳng còn lại."
GT | a\(\perp\)b tại M a cắt c tại N b//c |
KL | a\(\perp\)c tại N |
Chứng minh định lí:
Ta có: b//c
=>\(\widehat{M_3}=\widehat{N_1}\)(hai góc so le trong)
mà \(\widehat{M_3}=90^0\)
nên \(\widehat{N_1}=90^0\)
=>a\(\perp\)c tại N
Hãy chứng minh định lí nói ở Ví dụ trang 56: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại”. Trong chứng minh đó, ta đã sử dụng những điều đúng đã biết nào?
Giả sử cho 2 đường thẳng song song a và b, đường thẳng c vuông góc với a. Ta phải chứng minh c cũng vuông góc với b. Thật vậy:
Vì a//b nên \(\widehat {{A_1}} = \widehat {{B_1}}\) ( 2 góc đồng vị), mà \(\widehat {{A_1}} = 90^\circ \) nên \(\widehat {{B_1}} = 90^\circ \) hay \(b \bot c\)
Vậy một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại.
Trong chứng minh trên, ta đã sử dụng tính chất của hai đường thẳng song song.
Vẽ hình, viết giả thiết, kết luận của định lí: “ Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại”.
Giả sử cho 2 đường thẳng song song a và b, đường thẳng c vuông góc với a. Ta phải chứng minh c cũng vuông góc với b.
Thật vậy,
Vì a//b nên \(\widehat {{A_1}} = \widehat {{B_1}}\) ( 2 góc đồng vị), mà \(\widehat {{A_1}} = 90^\circ \)nên \(\widehat {{B_1}} = 90^\circ \) hay \(b \bot c\)(đpcm)
Chứng minh định lý(not giả thiết, kết luận): 1 đường thẳng vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng còn lại
Cảm ơn trước nha mn
GT a // b, c ⊥ a
KL c ⊥ b
Chứng minh:
Do a // b
⇒ ∠bKH = ∠aHc (đồng vị)
Mà ∠aHc = 90⁰ (do c ⊥ a)
⇒ ∠bKG = 90⁰
Vậy c ⊥ b
Bài 18: Vẽ hình minh họa và viết GT, KL cho các định lí sau:
a) Nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.
b) Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thăng kia.
c) Hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì chúng song song với nhau.
d) Hai góc đối đỉnh thì bằng nhau
d:
Giả thiết: \(\widehat{xAy}\) và \(\widehat{x'Ay'}\) là hai góc đối đỉnh
Kết luận: \(\widehat{xAy}=\widehat{x'Ay'}\)
Vẽ hình minh họa và viết giả thiết, kết luận bằng kí hiệu cho mỗi định lí sau:
a) Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại
b) Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng khác thì chúng song song với nhau.
c) Qua một điểm cho trước có duy nhất một đường thẳng vuông góc với đường thẳng cho trước.
Vẽ hình và viết giả thiết, kết luận của các định lí sau :
a) Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cắt đường thẳng kia
b) Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia
Chứng minh tính chất: 1 đường thẳng vuông góc với một trong 2 đường thẳng song song thì nó cũng vuông góc với đường thẳng kia.
sử dụng góc đồng vị bằng nhau (= 90) của 2 đường thẳng song song nha
Nếu 1 đường thẳng cắt 2 đường thẳng => 2 góc so le trong bằng nhau => 1 góc trên đường thẳng còn lại là góc vuông
=>1 đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại(ĐPCM)
Bài 1. Cho định lí:” Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng kia”.
Hãy vẽ hình minh họa định lí đó và viết giả thiết, kết luận bằng kí hiệu.