Dây cung AB chia đường tròn (O) thành hai cung. Cung lớn có số đo bằng ba lần cung nhỏ.
a) Tính số đo mỗi cung
b) Chứng minh khoảng cách OH từ tâm O đến dây cung AB có độ dài bằng \(\frac{{AB}}{2}\).
Một dây AB chai đường tròn (O; R) thành hai cung mà cung này gấp ba lần cung kia.Tính:
a, Số đo cung lớn và độ dài cung đó
b, Các góc của tam giác OAB
c, Khoảng cách từ tâm O đến dây AB
a, A n B ⏜ - cung lớn; A m B ⏜ - cung nhỏ
Vì sđ A n B ⏜ + sđ A m B ⏜ = 360 0 ; mà sđ A n B ⏜ = 3sđ A m B ⏜
nên sđ A n B ⏜ = 270 0 và độ dài cung A n B ⏜ là l = 3 πR 2
b, Vì DOAB vuông cân => A O B ^ = 90 0 và O A B ^ = O B A ^ = 45 0
c, Vì AB = R 2 => OH = R 2 2 (OH ⊥ AB; H ∈ AB)
Cho đường tròn (O) và dây AB chia đường tròn thành 2 cung thỏa mãn cung AMB=1/3.ANB. Tính số đo của 2 cung AMB và ANB, chứng minh khoảng cách từ tâm O đến dây AB = AB/2.
Cho đường tròn tâm O bán kính R .Dây AB của đường tròn đó chia đường tròn thành 2 cung ,trong đó cung lớn có số đo gấp 3 lần khung nhỏ .Tính độ dài AB theo R
Cho đường tròn (O; R). Vẽ dây AB sao cho số đo của cung nhỏ AB bằng \(\dfrac{1}{2}\) số đo cung lớn AB.
a) Tính góc ở tâm B
b) Tính độ dài dây AB theo R
Lời giải:
a. Câu hỏi chưa rõ ràng
b. Vì số đo cung nhỏ AB bằng một nửa số đo cung lớn AB mà tổng số
đo 2 cung bằng $360^0$ nên số đo cung nhỏ $AB$ là $120^0$
Từ $O$ kẻ $OH\perp AB$ như hình. Tam giác $OAB$ cân tại $O$ nên đường cao $OH$ đồng thời là đường phân giác, trung tuyến.
Do đó: $\widehat{AOH}=\frac{1}{2}\widehat{AOB}=\frac{1}{2}.120^0=60^0$
$\frac{AH}{AO}=\sin \widehat{AOH}=\sin 60^0=\frac{\sqrt{3}}{2}$
$\Rightarrow AH=\frac{\sqrt{3}}{2}AO=\frac{\sqrt{3}}{2}R$
$\Rightarrow AB=2AH=\sqrt{3}R$
a) Vẽ đường tròn tâm O, bán kính R = 2cm. Nêu cách vẽ cung AB có số đo bằng 60o. Hỏi dây AB dài bao nhiêu xentimet?
b) Làm thế nào để chia được đường tròn thành sáu cung bằng nhau như trên hình 12?
Hình 12
a) + Dùng compa vẽ đường tròn tâm O, bán kính R = 2cm.
+ Trên đường tròn lấy điểm A.Nối OA từ đó vẽ góc
Khi đó ta được cung AB có số đo bằng 60 º .
+ ΔAOB có OA = OB,
⇒ ΔAOB đều
⇒ AB = OA = OB = R = 2cm.
b) Chia đường tròn thành 6 cung bằng nhau:
+ Vẽ đường tròn tâm O, bán kính R.
+ Trên đường tròn tâm O, lấy điểm A.
+ Vẽ cung tròn tâm A, bán kính R cắt đường tròn tại B và C.
+ Vẽ cung tròn tâm B và C bán kính R cắt đường tròn tâm O tại giao điểm thứ hai là D và E.
+ Vẽ cung tròn tâm E bán kính R cắt đường tròn (O) tại giao điểm thứ hai là F.
Khi đó, ta chia được đường tròn thành sáu cung bằng nhau như trên
Từ O kẻ đg thg vg góc vs AB tại H
=> AH=BH=AB/2 = R căn 3 /2
Theo hệ thức lượng trong tam giác AHO vuông ở H ta có
SIN góc AOH = R căn 3 /2 : R
= căn 3/2 = 60
=> Góc AOB = 2 góc AOH= 2*60 =120
SĐ AB nhỏ =120
SĐ AB lớn = 360 - sđ AB nhỏ = 360 -120 = 240
Cho đường tròn (O;R) có đường kính AB. Gọi C là điểm chính giữa cung AB . Vẽ dây CD có độ dài bằng R , Tính số đo góc ở tâm BOD trong các trường hợp:
a, D nằm trên cung CB
b, D nằm trên cung CA
cho đường tròn tâm o bán kinh 3cm. hai dây cung ab và ac biết rằng ab= 5cm ac=2cm. tính khoảng cách từ o đến mỗi dây cung.
Cho đường tròn tâm O và dây AB không qua O. Gọi H là trung điểm AB, tia OH cắt cung lớn AB tại M. Một dây CD đi qua H
A) Chứng minh:Cung MA=cung MB
B) So sánh số đo các cung nhỏ AB và CD
a: Xét (O) có
\(\widehat{AOM}=\stackrel\frown{AM}\)
\(\widehat{BOM}=\stackrel\frown{BM}\)
mà \(\widehat{AOM}=\widehat{BOM}\)
nên \(\overrightarrow{MA}=\stackrel\frown{MB}\)
Trên đường tròn tâm O bán kính R, lấy hai điểm A, B sao cho số đo cung lớn AB bằng 270 0 . Độ dài dây AB là: