a) Gọi \(\overset\frown{AnB}\) là cung nhỏ và \(\overset\frown{AmB}\) là cung lớn có sđ\(\overset\frown{AmB}\) = 3sđ\(\overset\frown{AnB}\) (gt)
Mà sđ\(\overset\frown{AmB}\) + sđ\(\overset\frown{AnB}\) = 360o
Do đó 4sđ\(\overset\frown{AnB}\) = 360o
sđ\(\overset\frown{AnB}\) = 360o: 4 = 90o
Vậy sđ\(\overset\frown{AmB}\) = 3sđ\(\overset\frown{AnB}\) = 3. 90o = 270o .
b) Ta có \(\widehat {AOB}\)= sđ\(\overset\frown{AnB}\) (góc ở tâm chắn cung AB)
suy ra \(\widehat {AOB}\)= 90o suy ra tam giác AOB vuông tại O.
Mà AO = OB = R nên tam giác AOB vuông cân tại O.
Khi đó OH là đường cao đồng thời là đường trung tuyến.
Tam giác AOB vuông tại O có OH là đường trung tuyến ứng với cạnh huyền nên OH = \(\frac{{AB}}{2}\).