Tìm x, biết:
8,4:\(|\dfrac{2}{5}-2x| \)=2,1
Cho biểu thức P = (\(\dfrac{2x}{2x^2-5x+3}-\dfrac{5}{2x-3}\)):(\(3+\dfrac{2}{1-x}\))
a)Rút gọn P
b) Tính P với |3x-2|+1=5
c)Tìm x biết P>0
d) Tìm x biết P=\(\dfrac{1}{6-x^2}\)
a) đk: x khác 1; \(\dfrac{3}{2}\)
\(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)
= \(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)
= \(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)
b) Có \(\left|3x-2\right|+1=5\)
<=> \(\left|3x-2\right|=4\)
<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)
TH1: Thay x = 2 vào P, ta có:
P = \(\dfrac{-1}{2.2-3}=-1\)
TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:
P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)
c) Để P > 0
<=> \(\dfrac{-1}{2x-3}>0\)
<=> 2x - 3 <0
<=> x < \(\dfrac{3}{2}\) ( x khác 1)
d) P = \(\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)
<=> 2x - 3 = x2 - 6
<=> x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)
Tìm x:
a)\(5\dfrac{4}{7}:\left\{x:1,3+8,4.\dfrac{6}{7}.\left[6-\dfrac{\left(2,3+5:6,25\right).7}{8.0,0125+6,9}\right]\right\}=1\dfrac{1}{14}\)
b)\(\left|3x-2\right|+\left|2x-1\right|=4\)
a: \(\Leftrightarrow\dfrac{39}{7}:\left\{x\cdot\dfrac{10}{13}+7.2\cdot\dfrac{257}{79}\right\}=\dfrac{15}{14}\)
\(\Leftrightarrow x\cdot\dfrac{10}{13}+\dfrac{9252}{395}=\dfrac{26}{5}\)
\(\Leftrightarrow x\simeq-23,69\)
b: TH1: x<1/2
Pt sẽ là 2-3x+1-2x=4
=>-5x+3=4
=>-5x=1
=>x=-1/5(nhận)
TH2: 1/2<=x<2/3
Pt sẽ là 2x-1+2-3x=4
=>1-x=4
=>x=-3(loại)
TH3: x>=2/3
Pt sẽ là 3x-2+2x-1=4
=>5x-3=4
=>5x=7
=>x=7/5(nhận)
a,Tìm x,y,z biết/: \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\) và \(x^2-y^2=-16\)
b, Tìm x biết: \(\left|2x+3\right|=x+2\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)
b) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)
Đính chính
Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)
tìm x biết :
a) \(\left|x+\dfrac{1}{2}\right|\)=\(\dfrac{5}{2}\) b) \(\left|2x-\dfrac{2}{3}\right|\)+\(\dfrac{1}{3}\)=0 c) |x-2| = 2x + 1
\(\left[{}\begin{matrix}2x-\dfrac{2}{3}=\dfrac{1}{3}\\2x-\dfrac{2}{3}=\dfrac{-1}{3}\end{matrix}\right.\left[{}\begin{matrix}2x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)
a)\(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{5}{2}\\x+\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c)\(\left[{}\begin{matrix}x-2=2x-1\\-x+2=2x-1\end{matrix}\right.\left[{}\begin{matrix}x-2=2x-1\\-x+2=2x-1\end{matrix}\right.\left[{}\begin{matrix}x-2x=-1+2\\-x-2x=-1-2\end{matrix}\right.\left[{}\begin{matrix}-1x=1\\-3x=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=1:\left(-1\right)\\x=-3:\left(-3\right)\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Tìm x, biết:
\(\dfrac{1}{2}x+\dfrac{4}{5}=2x-\dfrac{8}{5}\)
\(\sqrt{x}=5\) (x ≥ 0)
x2 = 3
`#3107.101107`
`1/2x + 4/5 = 2x - 8/5`
`=> 1/2x - 2x = -4/5 - 8/5`
`=> -3/2x = -12/5`
`=> x = -12/5 \div (-3/2)`
`=> x = 8/5`
Vậy, `x = 8/5`
_____
`\sqrt{x} = 5`
`=> x = 5^2`
`=> x = 25`
Vậy, `x = 25`
___
`x^2 = 3`
`=> x^2 = (+-\sqrt{3})^2`
`=> x = +- \sqrt{3}`
Vậy, `x \in {-\sqrt{3}; \sqrt{3}}.`
Tìm x biết:
\(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)
\(x=-17\)
P/s: Nhớ tick cho mình nha. Thanks bạn
Tìm x biết
\(\dfrac{2x+1}{3}=\dfrac{x-5}{2}\)
`(2x+1)/3=(x-5)/2`
`=>2(2x+1)=3(x-5)`
`=>4x+2=3x-15`
`=>4x-3x=-15-2`
`=>x=-17`
Vậy `x=-17`
Tìm x, biết \(\dfrac{3}{x+2}\)=\(\dfrac{5}{2x+1}\)
`3/(x+2) = 5/(2x+1)`
`=> 3(2x+1) = (x+2)5`
`=> 6x + 3 = 5x +10`
`=> 6x-5x=10-3`
`=>x=7`
Tìm x,y biết: \(\dfrac{2x+1}{5}=\dfrac{3y-2}{7}=\dfrac{2x+3y-1}{6x}\)
Tìm x, biết:
a) \(\dfrac{-2}{3}\)+ 2x = \(\dfrac{4}{3}\)
b) \(\dfrac{5}{8}\) - 5 : x = \(\dfrac{-3}{8}\)
a) \(\dfrac{-2}{3}+2x=\dfrac{4}{3}\)
\(\Rightarrow2x=\dfrac{4}{3}-\dfrac{-2}{3}\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
b) \(\dfrac{5}{8}-5:x=\dfrac{-3}{8}\)
\(\Rightarrow-5:x=\dfrac{5}{8}-\dfrac{-3}{8}\)
\(\Rightarrow-5:x=1\)
\(\Rightarrow x=-5\)
a) \(\dfrac{-2}{3}+2x=\dfrac{4}{3}\)
\(\Rightarrow2x=\dfrac{4}{3}-\dfrac{-2}{3}\)
\(\Rightarrow2x=\dfrac{6}{3}\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=\dfrac{2}{2}\)
\(\Rightarrow x=1\)
b) \(\dfrac{5}{8}-5:x=\dfrac{-3}{8}\)
\(\Rightarrow-5:x=\dfrac{-3}{8}-\dfrac{5}{8}\)
\(\Rightarrow-5:x=-\dfrac{8}{8}\)
\(\Rightarrow-5:x=-1\)
\(\Rightarrow x=-5:-1\)
\(\Rightarrow x=5\)
Mink sửa lại câu b nhé!
\(\dfrac{5}{8}-5:x=\dfrac{-3}{8}\)
\(\Rightarrow5:x=\dfrac{5}{8}-\dfrac{-3}{8}\)
\(\Rightarrow5:x=1\)
\(\Rightarrow x=5\)