Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 8 2019 lúc 3:40

Chứng minh được M Q = N P = 1 2 B D  

Chứng minh tam giác ABD đều, suy ra được MN = BN = NP  PD = DQ = QM

Chứng minh các góc của đa giác MBNPDQ bằng nhau và cùng bằng 1200.

Từ đó quy ra đa giác MBNPDQ là lục giác đều (ĐPCM).

Sách Giáo Khoa
Xem chi tiết
Hương Yangg
21 tháng 4 2017 lúc 17:02

ABCD là hình thoi, = nên = , = .EAH là tam giác đều (vì tam giác cân có một góc ) nên = , = . Cũng thế = , = .

Vậy EBFGDH có tất cả các góc bằng nhau, mặt khác EBFGDH cũng có tất cả các cạnh bằng nhau( bằng nửa cạnh hình thoi)

Vậy EBFGDH là một lục giác đều


Nguyễn Bảo Trung
21 tháng 4 2017 lúc 18:16

ABCD là hình thoi, = nên = , = .EAH là tam giác đều (vì tam giác cân có một góc ) nên = , = . Cũng thế = , = .

Vậy EBFGDH có tất cả các góc bằng nhau, mặt khác EBFGDH cũng có tất cả các cạnh bằng nhau( bằng nửa cạnh hình thoi)

Vậy EBFGDH là một lục giác đều


Linh Phương
21 tháng 4 2017 lúc 20:02

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 4 2019 lúc 8:08

Giải bài 3 trang 115 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ABCD là hình thoi

⇒ AD // BC

Giải bài 3 trang 115 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ABCD là hình thoi ⇒ AB = BC = CD = DA

Mà E, F, G, H là trung điểm của 4 đoạn thẳng trên

⇒ AE = EB = BF = FC = CG = GD = DH = HA.

ΔAEH có góc A = 60º và AE = AH nên là tam giác đều

Giải bài 3 trang 115 Toán 8 Tập 1 | Giải bài tập Toán 8

+ Lại có ΔAEH đều

⇒ EH = AH = AE.

Chứng minh tương tự : FG = FC = CG

⇒ EB = BF = FG = GD = DH = HE.

Vậy EBFGDH có tất cả các góc bằng nhau và tất cả các cạnh bằng nhau nên là lục giác đều.

Trần Thị Ngọc Trâm
Xem chi tiết

Bạn tham khảo ở link này nha :

https://h.vn/hoi-dap/question/246529.html

~~ Hok tốt ~~

Khách vãng lai đã xóa
ミ★ 🆂🆄🅽 ★彡
6 tháng 4 2020 lúc 14:55

Bài giải này cùng link : https://h.vn/hoi-dap/question/246529.html   nên bạn tham khảo nhé 

Khách vãng lai đã xóa
Thanh Thúy Trần
Xem chi tiết
Steolla
31 tháng 8 2017 lúc 12:26

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

honganhh
Xem chi tiết
Nơi gió về
Xem chi tiết
Le Thanh Thai Son
Xem chi tiết
Mạnh Hoa
Xem chi tiết
Tiếng anh123456
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 9:36

Xét ΔABD có M,Q lần lượt là trung điểm của AB,AD

=>MQ là đường trung bình

=>MQ//BD và MQ=BD/2

Xét ΔCBDcó

N,P lần lượt là trung điểm của CB,CD

=>NP là đường trung bình

=>NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

Xét  ΔBAC có M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình

=>MN=AC/2=BD/2=MQ

Xét tứ giác MNPQ có

MQ//NP

MQ=NP

=>MNPQ là hình bình hành

mà MN=MQ

nên MNPQ là hình thoi