Cho M, N, P, Q, K lần lượt là trung điểm của các cạnh AB, BC, CD, DE và EA của ngũ giác đều ABCDE (H.9.44). Hỏi MNPQK có phải là ngũ giác đều hay không?
Cho ngũ giác đều ABCDE. Gọi M, N, P, Q,, R tương ứng là trung điểm của các cạnh BC, CD, DE, EA, AB. Chứng minh MNPQR là ngũ giác đều.
Xét △ ABC và △ BCD:
AB = BC (gt)
∠ B = ∠ C (gt)
BC = CD (gt)
Do đó: △ ABC = △ BCD (c.g.c)
⇒ AC = BD (1)
Xét △ BCD và △ CDE:
BC = CD (gt)
∠ C = ∠ D (gt)
CD = DE (gt)
Do đó: △ BCD = △ CDE (c.g.c) ⇒ BD = CE (2)
Xét △ CDE và △ DEA:
CD = DE (gt)
∠ D = ∠ E (gt)
DE = EA (gt)
Do đó: △ CDE = △ DEA (c.g.c) ⇒ CE = DA (3)
Xét △ DEA và △ EAB:
DE = EA (gt)
∠ E = ∠ A (gt)
EA = AB (gt)
Do đó: △ DEA = △ EAB (c.g.c) ⇒ DA = EB (4)
Từ (1), (2), (3), (4) suy ra: AC = BD = CE = DA = EB
Trong △ ABC ta có RM là đường trung bình
⇒ RM = 1/2 AC (tính chất đường trung bình của tam giác)
Mặt khác, ta có: Trong Δ BCD ta có MN là đường trung bình
⇒ MN = 1/2 BD (tính chất đường trung bình của tam giác)
Trong △ CDE ta có NP là đường trung bình
⇒ NP = 1/2 CE (tính chất đường trung bình của tam giác)
Trong △ DEA ta có PQ là đường trung bình
⇒ PQ = 1/2 DA (tính chất đường trung bình của tam giác)
Trong △ EAB ta có QR là đường trung bình
⇒ QR = 1/2 EB (tính chất đường trung bình của tam giác)
Suy ra: MN = NP = PQ = QR = RM
Ta có: ∠ A = ∠ B = ∠ C = ∠ D = ∠ E = ((5-2 ). 180 0 )/5 = 108 0
△ DPN cân tại D
⇒ ∠ (DPN) = ∠ (DNP) = ( 180 0 - ∠ D )/2 = ( 180 0 - 108 0 )/2 = 36 0
△ CNM cân tại C
⇒ ∠ (CNM) = ∠ (CMN) = ( 180 0 - ∠ D )/2 = ( 180 0 - 108 0 )/2 = 36 0
∠ (ADN) + ∠ (PNM) + ∠ (CNM) = 180 0
⇒ ∠ (PNM) = 180 0 - ( ∠ (ADN) + ∠ (CNM) )
= 180 0 - ( 36 0 – 36 0 ) = 108 0
△ BMR cân tại B
⇒ ∠ (BMR) = ∠ (BRM) = ( 180 0 - ∠ B )/2 = ( 180 0 - 108 0 )/2 = 36 0
∠ (CMN) + ∠ (BRM) + ∠ (BMR) = 180 0
⇒ ∠ (NMR) = 180 0 - ( ∠ (CMN) + ∠ (BMR) )
= 180 0 - ( 36 0 – 36 0 ) = 108 0
△ ARQ cân tại A
⇒ ∠ (ARQ) = ∠ (AQR) = ( 180 0 - ∠ A )/2 = ( 180 0 - 108 0 )/2 = 36 0
∠ (BRM) + ∠ (MRQ) + ∠ (ARQ) = 180 0
⇒ ∠ (MRQ) = 180 0 - ( ∠ (BRM) + ∠ (ARQ) )
= 180 0 - ( 36 0 – 36 0 ) = 108 0
△ QEP cân tại E
⇒ ∠ (EQP) = ∠ (EPQ) = ( 180 0 - ∠ E )/2 = ( 180 0 - 108 0 )/2 = 36 0
∠ (AQR) + ∠ (RQP) + ∠ (EQP) = 180 0
⇒ ∠ (RQP) = 180 0 - ( ∠ (AQR) + ∠ (EQP) )
= 180 0 - ( 36 0 – 36 0 ) = 108 0
∠ (EQP) + ∠ (QPN) + ∠ (DPN) = 180 0
⇒ ∠ (QPN) = 180 0 - ( ∠ (EPQ) + ∠ (DPN) )
= 180 0 - ( 36 0 – 36 0 ) = 108 0
Suy ra : ∠ (PNM) = ∠ (NMR) = ∠ (MRQ) = ∠ (RQP) = ∠ (QPN)
Vậy MNPQR là ngũ giác đều.
Cho ngũ giác lồi ABCDE có M; N; P; Q; R lần lượt là trung điểm của AB; BC; CD; DE; EA. Lấy S; X; Y; Z; T theo thứ tự là trung điểm của NR; MQ; NQ; MP; PR.
a) Hãy tìm tỉ số chu vi và tỉ số diện tích giữa 2 ngũ giác ABCDE và XTYZS ?
b) Tìm điều kiện của ngũ giác ABCDE để ngũ giác XTYZS là ngũ giác đều ? (By: 黒川猫)
câu 1. ngũ giác ABCDE. M : N: P :Q lần lượt là trung điểm cùa AB: BC ; DE ; AE. I ; K là trung điểm của NQ và MP. cm
a) IK // CD
b) IK = 1/4 CD
câu 2. tìm số cạnh của 1 đa giác đều biết số đo mỗi góc của đa giác đó là 150 độ
câu 3. ngũ giác đều ABCDE. AB giao BE tại I. tứ giác CIED là hình gì? vì sao??
HELP ME, PLEASE
a) Cho tam giác đều ABC. Gọi M, N, P tương ứng là trung điểm của các cạnh BC, CA, AB. Chứng minh MNP là tam giác đều
b) Cho hình vuông ABCD. Gọi M, N, P, Q tương ứng là trung điểm của các cạnh BC, CD, DA, AB. Chứng minh MNPQ là hình vuông (tứ giác đều)
c) Cho ngũ giác đều ABCD. Gọi M, N, P, Q, R tương ứng là trung điểm của các cạnh BC, CD, EA, AB. Chứng minh MNPQR là ngũ giác đều
a) và b) Chứng minh nhờ tính chất đường trung bình của tam giác
c) Để chứng minh MNQR là ngũ giác đều ta cần chứng minh hai điều : Hình đó có tất cả các cạnh bằng nhau và có tất cả các góc bằng nhau.
Cho ngũ giác đều ABCDE có chiều dài cạnh \(a=\sqrt{17}\)gọi M, N, P , Q theo thứ tự là các trung điểm của AB, BC, DE, AE. Gọi I là trung điểm của NQ, K là trung điểm của MP . Tính IK
Cho ngũ giác lồi ABCDE. Gọi M,N,P,Q là trung điểm của AB,BC,DE,EA. Chứng minh rằng MN đi qua trung điểm của PQ khi và chỉ khi MN // CD.
Goi I la giao diem cua MN va CD
-> I la trung diem cua BD
Van dung tinh chat duong trung binh doi hai Tg ABD va tg AED
=> PI // NQ
=> PI = NQ
-> tu giac NIPQ la hinh binh hanh n
-> Mn di qua trung diem Pq
Khi MN//CD
quan sat hinh
Trong ngũ giác lồi ABCDE, người ta nối trung điểm M của cạnh AB với trung điểm P của cạnh CD, nối trung điểm N của cạnh BC với trụng điểm R của cạnh DE. Gọi H và K lầm lượt là trung điểm của MP và NR. Chứng minh HK song song với AE và HK = \(\frac{1}{4}\)AE.
Cho ngũ giác ABCDE và gọi M, N. P, Q, I, J theo thứ tự là trung điểm cạnh AB, EA, DE, NP, MQ. Chứng minh rằng IJ // CD
Cho ngũ giác ABCDE và gọi M, N. P, Q, I, J theo thứ tự là trung điểm cạnh AB, EA, DE, NP, MQ. Chứng minh rằng IJ // CD
Cho ngũ giác ABCDE.Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,BC,DE,EA; H ,K là trung điểm của NQ,MP. CMR: KH//CD.