Cho ngũ giác ABCDE và gọi M, N. P, Q, I, J theo thứ tự là trung điểm cạnh AB, EA, DE, NP, MQ. Chứng minh rằng IJ // CD
Cho hình bình hành ABCD. Gọi M và N theo thứ tự là trung điểm của các cạnh AB và CD. Lấy P thuộc CM và Q thuộc AN sao cho AQ : QN = CP:PM=2:1. Chứng minh rằng B,D,P và Q thẳng hàng.
Cho tứ giác ABCD có AB song song với CD. Các đường thẳng AC, BD cắt nhau ở E và các đường thẳng AD, BC cắt nhau ở F. Gọi M, N theo thứ tự là trung điểm cạnh AB, CD. Chứng minh rằng E, F, M, N cùng nằm trên một đường thẳng.
Cho tứ giác ABCD. Gọi I. J theo thứ tự là trung điểm AC, BD
1. Chứng minh rằng \(AB^2+BC^2+CD^2+DA^2=AC^2+BD^2+4ỊJ^2\)
2. Chứng minh rằng \(AB^2+BC^2+CD^2+DA^2\ge AC^2+BD^2\)
Cho tứ diện ABCD. Gọi M, N là trung điểm AB, CD; P,Q là hai điểm theo thứ tự thuộc hai cạnh AC, BD sao cho PA/PC=QB/QD. Chứng minh rằng M, N, P, Q cùng thuộc một mặt phẳng.
Cho tam giác ABC. Về phía ngoài của tam giác, dựng hai hình vuông ABDE và ACFG. Gọi I, J theo thứ tự là trung đierm của BC, EG
a) Chúng minh rằng \(AI\perp EG,AJ\perp BC\)
b) Chứng minh rằng \(IJ\perp DF\)
Cho hình hộp ABCD.A'B'C'D'. Xét M thuộc BB', N thuộc Cd sao cho BM : MB' = CN : ND và gọi I, J theo thứ tự là trungd diểm BC, D'A'. Chứng minh rằng M, N, I, J đồng phẳng.
Cho tứ diện ABCD có AB=CD, BC=DA. Gọi M, N theo thứ tự là trung điểm của CA, BD.
Chứng minh rằng MN là đoạn vuông góc chung của các đường thẳng CA và BD
Cho hình lăng trụ ABC.A'B'C'. Gọi M. N theo thứ tự là trung điểm các cạnh BB', C'A' và P là điểm trên cạnh B'C' sao cho C'P = 2PB'.
Chứng minh rằng A, M, N và P đồng phẳng.