Người ta thống kê các loại ô tô chạy qua một trạm thu phí trong 1 giờ và vẽ được biểu đồ tần số như Hình 7.8.
a) Lập bảng tần số cho dữ liệu được biểu diễn trên biểu đồ.
b) Từ bảng tần số, hãy cho biết loại xe nào đi qua trạm thu phí nhiều nhất.
Xét bảng 2 (được lập ở bài tập mẫu của bài 1)
Để mô tả bảng 2 và trình bày các số liệu thống kê, người ta vẽ biểu đồ tần số hình cột dưới đây (h.55)
Hình 55. Biểu đồ tần số hình cột về thành tích chạy 50m của học sinh lớp 10A trường Trung học phổ thông C (đơn vị là giây)
Dựa vào biểu đồ trên, có thể vẽ được đường gấp khúc tần số (kí hiệu là D), cũng để mô tả bảng 2 và trình bày các số liệu thống kê.
Đường gấp khúc tần số D như vậy là đường gấp khúc nào dưới đây (h.55)?
Các đỉnh của đường gấp khúc tần số có tọa độ là ( c i ; n i ), với c i là giá trị đại diện của lớp thứ i, n i là tần số của lớp thứ i. Từ đó suy ra: các đỉnh của đường gấp khúc tần số là các trung điểm của các cạnh phía trên của các cột (các hình chữ nhật) của biểu đồ tần số hình cột
Đường gấp khúc I 1 I 2 I 3 I 4 I 5 I 6 với I 1 , I 2 , I 3 , I 4 , I 5 , I 6 lần lượt là trung điểm của các đoạn thẳng A 1 B 1 , A 2 B 2 , A 3 B 3 , A 4 B 4 , A 5 B 5 , A 6 B 6
Số liệu về số lớp học cấp trung học cơ sở của 5 tỉnh Tây Nguyên tính đến ngày 30/9/2021 được cho trong bảng thống kê sau:
a) Số liệu từ bảng thống kê trên được biểu diễn vào biểu đồ cột như sau. Hãy tìm các giá trị của P, Q, R trong biểu đồ.
b) Biểu đồ cột ở câu a) được chuyển sang biểu đồ hình quạt tròn như dưới đây. Hãy tìm các giá trị của x, y, z, t, m trong biểu đồ.
c) So sánh ý nghĩa của hai loại biểu đồ trên
a) P là số lớp học cấp trung học cơ sở của tỉnh Gia Lai nên \(P = 2692\);
Q là số lớp học cấp trung học cơ sở của tỉnh Đắk Lắk nên \(Q = 3633\);
R là số lớp học cấp trung học cơ sở của tỉnh Lâm Đồng nên \(R = 2501\).
b) Tổng số lớp học cấp trung học cơ sở của 5 tỉnh Tây Nguyên là:
\(1249 + 2692 + 3633 + 1234 + 2501 = 11309\) (lớp học).
Suy ra:
\(x\% = \frac{{2692}}{{11309}}.100\% \approx 24\% \)
\(\begin{array}{l}y\% = \frac{{3633}}{{11309}}.100\% \approx 32\% \\z\% = \frac{{1234}}{{11309}}.100\% \approx 11\% \\t\% = \frac{{2501}}{{11309}}.100\% \approx 22\% \\m\% = \frac{{1249}}{{11309}}.100\% \approx 11\% \end{array}\)
c) Biểu đồ cột cho ta thấy sự so sánh hơn kém về số lớp học cấp trung học cở sở của 5 tỉnh Tây Nguyên.
Biểu đồ hình quạt tròn ngoài việc cho ta biết sự so sánh hơn kém về số lớp học cấp trung học cơ sở của 5 tỉnh Tây Nguyên, còn cho biết tỉ lệ phần trăm số lớp học của mỗi tỉnh so với toàn thể khu vực.
Người ta đếm số xe ô tô đi qua một trạm thu phí mỗi phút trong khoảng thời gian từ 9 giờ đến 9 giờ 30 phút sáng. Kết quả được ghi lại ở bảng sau:
a) Tính số xe trung bình đi qua trạm thu phí trong mỗi phút.
b) Tổng hợp lại số liệu trên vào bảng tần số ghép nhóm theo mẫu sau:
c) Hãy ước lượng trung bình số xe đi qua trạm thu phí trong mỗi phút từ bảng tần số ghép nhóm trên.
Tham khảo:
a) Số xe trung bình đi qua trạm thu phí trong mỗi phút là: \(\bar x \approx 17,4\) (xe).
b)
c) Do số xe là số nguyên nên ta hiệu chỉnh lại như sau:
Số xe trung bình đi qua trạm thu phí trong mỗi phút từ bảng tần số ghép nhóm là:
\(\bar x = \frac{{5.8 + 9.13 + 3.18 + 9.23 + 4.28}}{{30}} \approx 17,7\)
Cho các số liệu thống kê được ghi trong hai bảng sau
a) Lập bảng phân bố tần số và tần suất ghép lớp theo nhóm cá thứ 1 với các lớp là
[630; 635) ; [635;640) ; [640; 645) ; [645; 650) ; [650; 655)
b) Lập bảng phân bố tần số và tần suất ghép lớp theo nhóm cá thứ 2 với các lớp là:
[638;642) ; [642; 646) ; [646;650) ; [650; 654] ;
c) Mô tả bảng phân bố tần suất ghép lớp đã được lập ở câu a) bằng cách vẽ biểu đồ tần suất hình cột và đường gấp khúc tần suất
d) Mô tả bảng phân bố tần suất ghép lớp đã được lập ở câu b) bằng cách vẽ biểu đồ tần số hình cột và đường gấp khúc tần số
e) Tính số trung bình cộng, phương sai và độ lệch chuẩn của các bảng phân bố đã lập được
Từ đó, xét xem nhóm cá nào có khối lượng đồng đều hơn
a) Bảng phân bố tần số và tần suất:
Nhóm cá thứ I | Tần số | Tần suất |
---|---|---|
[630;635) | 1 | 4,2% |
[635;640) | 2 | 8,3% |
[640;645) | 3 | 12,5% |
[645;650) | 6 | 25% |
[650;655] | 12 | 50% |
Cộng | 24 | 100% |
b) Bảng phân bố tần số và tần suất:
Nhóm cá thứ I | Tần số | Tần suất |
---|---|---|
[638;642) | 5 | 18,52% |
[642;646) | 9 | 33,33% |
[646;650) | 1 | 3,7% |
[650;654) | 12 | 44,45% |
Cộng | 27 | 100% |
c) Biểu đồ tần suất hình cột:
- Đường gấp khúc tần suất
d) Biểu đồ tần số
- Đường gấp khúc tần số
e) * Xét bảng phân bố ở câu a)
- Số trung bình:
- Phương sai:
- Độ lệch chuẩn:
* Xét bảng phân bố ở câu b):
- Số trung bình:
- Phương sai:
- Độ lệch chuẩn:
Nhận thấy s2 < s1 nên nhóm cá thứ hai có khối lượng đồng đều hơn.
Cho các số liệu thống kê ghi ở bảng sau
Số người xem trong 60 buổi chiếu phim của một rạp chiếu phim nhỏ
Vẽ biểu đồ tần suất hình cột (mô tả bảng phân bố tần suất ghép lớp
Hình 58: Biểu đồ tần suất hình cột về số người xem trong 60 buổi chiếu phim của một rạp chiếu phim nhỏ
Người ta thống kê thời gian giải một bài toán tính theo phút của các học sinh trong một lớp học rồi lập bảng “tần số” và biểu diễn ở biểu đồ trên theo thời gian giải một bài toán tính theo phút (x) và “tần số” (n).Tần số bằng 7 tương ứng với thời gian giải một bài toán tính theo phút là:
A.3
B.4
C.5
D.6
Cho các số liệu thống kê được ghi trong hai bảng sau đây :
a. Lập bảng phân bố tần số và tần suất ghép lớp theo nhóm cá thứ 1 với các lớp là :
[630;635); [635;640); [640;645); [645;650); [650;655]
b. Lập bảng phân bố tần số và tần suất ghép lớp theo nhóm cá thứ 2 với các lớp là :
[638;642); [642;646); [646;650); [650;654]
c. Mô tả bảng phân bố tần suất ghép lớp đã được lập ở câu a) bằng cách vẽ biểu đồ tần suất hình cột và đường gấp khúc tần suất ?
d. Mô tả bảng phân bố tần số ghép lớp đã được lập ở câu b), bằng cách vẽ biểu đồ tần số hình cột và đường gấp khúc tần số
e. Tính số trung bình cộng, phương sai và độ lệch chuẩn của các bảng phân bố tần số và tần suất ghép lớp đã lập được
Từ đó, xem xét nhóm cá nào có khối lượng đồng đều hơn ?
a) Bảng phân bố tần số và tần suất:
b) Bảng phân bố tần số và tần suất:
c) Biểu đồ tần suất hình cột:
- Đường gấp khúc tần suất
d) Biểu đồ tần số
- Đường gấp khúc tần số
e) Xét bảng phân bố ở câu a)
- Số trung bình cộng:
Từ đó ta thấy nhóm cá thứ 2 có khối lượng đồng đều hơn.
Cho các số liệu thống kê ghi ở bảng sau :
Số người xem trong 60 buổi chiếu phim của một rạp chiếu phim nhỏ
a) Lập bảng phân bố tần số và tần suất ghép lớp với các lớp :
[0; 10); [10; 20); [20; 30); [30; 40); [40; 50); [50;60]
b) Vẽ biểu đồ tần suất hình cột (mô tả bảng phân bố tần suất ghép lớp)
c) Tính số trung bình, phương sai và độ lệch chuẩn của các số liệu thống kê đã cho
c) Trong 60 buổi được khảo sát
Chiếm tỉ lệ thấp nhất (8,33%) là những buổi có dưới 10 người xem
Chiếm tỉ lệ cao nhất (25%) là những buổi có từ 30 người đến dưới 40 người xem
Đa số (78,33%) các buổi có từ 10 người đến dưới 50 người xem
d) \(\overline{x}\approx32\) người; \(s^2\approx219,7;s=15\) người
Bảng thống kê sau đây cho biết thành tích của một vận động viên chạy cự li 1 500 m trong thời gian luyện tập từ tuần 1 đến tuần 7.
Hãy vẽ biểu đồ đoạn thẳng biểu diễn bảng số liệu trên.
Xét bảng phân bố tần số và tần suất ghép lớp đã được lập ở bài tập số 3 của bài 1.
a) Hãy vẽ biểu đồ tần suất hình cột, đường gấp khúc tần suất.
b) Hãy vẽ biểu đồ tần số hình cột, đường gấp khúc tần số.
c) Dựa vào biểu đồ tần suất hình cột đã vẽ ở câu a, hãy nêu nhận xét về khối lượng của 30 củ khoai tây được khảo sát.
Lớp của khối lượng | Tần số | Tần suất |
[70; 80) | 3 | 10% |
[80; 90) | 6 | 20% |
[90; 100) | 12 | 40% |
[100; 110) | 6 | 20% |
[110; 120) | 3 | 10% |
Cộng | 30 | 100% |
a) Biểu đồ tần suất hình cột:
Biểu đồ tần suất hình gấp khúc:
b) Biểu đồ tần số hình cột:
Biểu đồ tần số đường gấp khúc:
c) Dựa vào biểu đồ tần suất hình cột ta nhận thấy khối lương khoai tây thường nằm trong khoảng từ 90 đến 100 gram.