Tính: a) \(\sqrt[3]{125}\); b) \(\sqrt[3]{0,008}\); c) \(\sqrt[3]{\dfrac{-8}{27}}\).
tính giá trị của biểu thức
\(A=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9}+\frac{125}{7}}\)
Tính: \(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}+\sqrt[3]{3-\sqrt{9+\frac{125}{27}}}}\)
Tính \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
CMR x là số nguyên
Thực hiện phép tính rút gọn sau:
\(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)
\(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}-\dfrac{\sqrt{5}-5}{\sqrt{5}}\)
\(C=\dfrac{1}{\sqrt{3}+\sqrt{2}}+\sqrt{7-4\sqrt{3}}+\sqrt{2}\)
a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)
\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)
\(=11\sqrt{2}\)
b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)
\(=5\sqrt{5}-1\)
Tính
a) \(\sqrt[3]{27}-\sqrt[3]{-8}-\sqrt[3]{125}\)
b) \(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
a) 3\(\sqrt{ }\)27 – 3\(\sqrt{ }\)-8 – 3\(\sqrt{ }\)125 = 3\(\sqrt{ }\)33 – 3\(\sqrt{ }\)(-2)3 – 3\(\sqrt{ }\)53 = 3 – (-2) – 5 = 0
b) = \(\sqrt{ }\)27 – 3\(\sqrt{ }\)216 = 3\(\sqrt{ }\)33 – 3\(\sqrt{ }\)(6)3 = 3 – 6 = -3
giúp em với ạ tính
\(\sqrt[3]{125}.\sqrt[3]{\dfrac{16}{10}}.\sqrt[3]{-0,5}\)
\(\sqrt[3]{125}\cdot\sqrt[3]{\dfrac{16}{10}}\cdot\sqrt[3]{-0.5}\)
\(=\sqrt[3]{125\cdot\dfrac{16}{10}\cdot\dfrac{-1}{2}}\)
\(=\sqrt[3]{-100}\)
\(=\sqrt[3]{125.\dfrac{16}{10}.\left(-0,5\right)}\)
\(=\sqrt[3]{-100}\)
Trắc nghiệm
Câu1: Kết quả phép tính \(\sqrt{\left(2+\sqrt{3}\right)}^2+\sqrt{3}\) là: A.-2 B.2-2√3 C.2 D.2+2√3
Câu 2: Giá trị của x để \(\sqrt{x}-1=0\) là: A. 5 B. 125 C. 1 D.25
Câu3 : Kết quả phép tính \(\left(\sqrt{3}+2\right)\left(\sqrt{3-2}\right)\) là : A.-1 B.5 C.1 D. -5
Câu 5 : Cho biết \(\sqrt{x^2=1}\).Giá trị x là: A. x=1 B. x= -1 C. x=_+1 D. x=2
giải giúp mk vớiiiiiii ạ
Tính:
a)\(\sqrt[3]{125}.\sqrt[3]{\dfrac{16}{10}}.\sqrt[3]{-0,5}\)
b) \(\dfrac{\sqrt[3]{4}+\sqrt[3]{2}+2}{\sqrt[3]{4}+\sqrt[3]{2}+1}\)
c) \(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}\)
d) \(\dfrac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}\)
e) E=\(\sqrt[3]{2+10\sqrt{\dfrac{1}{27}}}+\sqrt[3]{2-10\sqrt{\dfrac{1}{27}}}\)
a.
\(\sqrt[3]{125}.\sqrt[3]{\frac{16}{10}}.\sqrt[3]{-0,5}=\sqrt[3]{125.\frac{16}{10}.(-0,5)}=\sqrt[3]{-100}\)
b.
\(=1+\frac{1}{\sqrt[3]{4}+\sqrt[3]{2}+1}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2}-1)(\sqrt[3]{4}+\sqrt[3]{2}+1)}=1+\frac{\sqrt[3]{2}-1}{(\sqrt[3]{2})^3-1}=1+\sqrt[3]{2}-1=\sqrt[3]{2}\)
c.
\(\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}=\sqrt{3}+\sqrt[3]{(\sqrt{3}+1)^3}=\sqrt{3}+\sqrt{3}+1=2\sqrt{3}+1\)
d.
\(\frac{4+2\sqrt{3}}{\sqrt[3]{10+6\sqrt{3}}}=\frac{(\sqrt{3}+1)^2}{\sqrt[3]{(\sqrt{3}+1)^3}}=\frac{(\sqrt{3}+1)^2}{\sqrt{3}+1}=\sqrt{3}+1\)
e.
Đặt \(\sqrt[3]{2+10\sqrt{\frac{1}{27}}}=a; \sqrt[3]{2-10\sqrt{\frac{1}{27}}}=b\)
Khi đó:
$a^3+b^3=4$
$ab=\frac{2}{3}$
$E^3=(a+b)^3=a^3+b^3+3ab(a+b)$
$E^3=4+2E$
$E^3-2E-4=0$
$E^2(E-2)+2E(E-2)+2(E-2)=0$
$(E-2)(E^2+2E+2)=0$
Dễ thấy $E^2+2E+2>0$ nên $E-2=0$
$\Leftrightarrow E=2$
tính:
\(2\sqrt{5}\)+\(\dfrac{3}{4}\sqrt{80}\)-0,3\(\sqrt{500}\)-\(\dfrac{1}{5}\sqrt{125}\)
\(=2\sqrt{5}+3\sqrt{5}-3\sqrt{5}-\sqrt{5}=\sqrt{5}\)
Tính:
\(R=\dfrac{2}{\sqrt{4-3\sqrt[4]{5}+2\sqrt[4]{25}-\sqrt[4]{125}}}\)
Bài này nằm trong cuốn nâng cao và phát triển của Vũ Hữu Bình, và lời giải của nó thực sự rất "ảo". Có lẽ trừ tác giả ra, khó ai mà nghĩ được ra cách giải: