Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shuny
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 11 2021 lúc 19:20

Bài 1:

1) \(9A=3^3+3^5+...+3^{113}\)

\(\Rightarrow8A=9A-A=3^3+3^5+...+3^{113}-3-3^3-...-3^{111}=3^{113}-3\)

\(\Rightarrow A=\dfrac{3^{113}-3}{8}\)

2) \(9B=3^4+3^6+...+3^{202}\)

\(\Rightarrow8B=9B-B=3^4+3^6+...+3^{202}-3^2-3^4-...-3^{200}=3^{202}-3^2=3^{202}-9\)

\(\Rightarrow B=\dfrac{3^{202}-9}{8}\)

3) \(25C=5^3+5^5+...+5^{101}\)

\(\Rightarrow24C=25C-C=5^3+5^5+...+5^{101}-5-5^3-...-5^{99}=5^{101}-5\)

\(\Rightarrow C=\dfrac{5^{101}-5}{24}\)

4) \(25D=5^4+5^6+...+5^{102}\)

\(\Rightarrow24D=25D-D=5^4+5^6+...+5^{102}-5^2-5^4-...-5^{100}=5^{102}-25\)

\(\Rightarrow D=\dfrac{5^{102}-25}{24}\)

Lấp La Lấp Lánh
2 tháng 11 2021 lúc 19:25

Bài 2:

a) Gọi d là UCLN(2n+1,n+1)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\n+1⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Rightarrow1⋮d\)

Vậy 2n+1 và n+1 là 2 số nguyên tố cùng nhau

\(\Rightarrow\dfrac{2n+1}{n+1}\) là phân số tối giản

b) Gọi d là UCLN(2n+3,3n+4)

\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+8⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\Rightarrow1⋮d\)

\(\Rightarrow\dfrac{2n+3}{3n+4}\) là phân số tối giản

Huyền Trân
Xem chi tiết
Phạm Minh Ngọc
Xem chi tiết
Nguyễn Đức Trí
12 tháng 8 2023 lúc 14:31

 a)\(...A=\dfrac{2^{50+1}-1}{2-1}=2^{51}-1\)

b) \(...\Rightarrow B=\dfrac{3^{80+1}-1}{3-1}=\dfrac{3^{81}-1}{2}\)

c) \(...\Rightarrow C+1=1+4+4^2+4^3+...+4^{49}\)

\(\Rightarrow C+1=\dfrac{4^{49+1}-1}{4-1}=\dfrac{4^{50}-1}{3}\)

\(\Rightarrow C=\dfrac{4^{50}-1}{3}-1=\dfrac{4^{50}-4}{3}=\dfrac{4\left(4^{49}-1\right)}{3}\)

Tương tự câu d,e,f bạn tự làm nhé

Trần Thu Hiền
Xem chi tiết
Nguyễn Minh Khánh
4 tháng 10 2022 lúc 21:25

siuu

Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 16:44

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

cyfytfy
27 tháng 10 2024 lúc 17:03

1990.1990 -1992.1988

 

Trần Huyền Ngọc
Xem chi tiết
HT.Phong (9A5)
14 tháng 10 2023 lúc 11:43

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

Hà Chipp
14 tháng 10 2023 lúc 11:54

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee

awwwwwwwwwe
14 tháng 10 2023 lúc 12:02

khó v

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2017 lúc 15:06

Đặt vế trái bằng S n

Với n = 1 vế trái chỉ có một số hạng bằng 1, vế phải bằng 1

Giả sử đã có Giải sách bài tập Toán 11 | Giải sbt Toán 11 với k ≥ 1. Ta phải chứng minh

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Thật vậy, ta có

S k   +   1   =   S k   +   2 k   +   1   -   1 2   =   S k   +   2 k   +   1 2

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Huyền Nguyễn
Xem chi tiết
Akai Haruma
16 tháng 12 2023 lúc 23:06

Bài 1:

$B=1+3+3^2+3^3+...+3^{100}$

$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$

$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$

$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$

$\Rightarrow B$ chia 4 dư 1.

Akai Haruma
16 tháng 12 2023 lúc 23:07

Bài 2:

$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$

$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$

$\Rightarrow C+5C=5-5^{2025}$

$6C=5-5^{2025}$

$C=\frac{5-5^{2025}}{6}$

Trương Mỹ Duyên
Xem chi tiết
Bùi Quốc Kiệt
17 tháng 2 2020 lúc 17:37

Máy tính đâu,nó sinh ra là để làm gì???

Khách vãng lai đã xóa