chứng minh a/b = c/d
2a+2b/2a-2b = 2c+2d/2c-2d
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\left(b,d\ne0\right)\).Chứng minh rằng
\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a+b}{2a-b}=\dfrac{2bk+b}{2bk-b}=\dfrac{2k+1}{2k-1}\)
\(\dfrac{2c+d}{2c-d}=\dfrac{2dk+d}{2dk-d}=\dfrac{2k+1}{2k-1}\)
=>\(\dfrac{2a+b}{2a-b}=\dfrac{2c+d}{2c-d}\)
b: \(\dfrac{2a+b}{a-2b}=\dfrac{2bk+b}{bk-2b}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{2k+1}{k-2}\)
=>\(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
cho a/b=c/d chứng minh 2a-3b/a+2b=2c-3d/c+2d
cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh\(2a-\frac{3b}{a}+2b=2c-\frac{3d}{c}+2d\)
đề đúng không vậy ta ??
dễ thôi
a/b=c/d
=> a/c=b/d
=>2a/2c=3b/3d=a/c=2b/2d
=>2a-3b/2c-3d=a+2b/c=2d
=> 2a-3b/a+2b=2c-3d/c+2d
vậy.....
hơi khó nhìn chút nhưng viết ra giấy là rõ ngay ấy mà
k cho mik
cho a/b=c/d chứng minh 2a-3b/a+2b=2c-3d/c+2d
Cho : 2a+b/a-2b=2c+d/c-2d
Chứng minh a/b=c/d
giả sử \(\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}\)
\(=>\frac{a}{c}=\frac{b}{d}=\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
vậy \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}=>\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)
p/s: ko chắc lắm mong là ko sai =]
Giả sử a/b=c/d
Đặt a/b=c/d=k=>a=bk;c=dk
2a+b/a-2b=2bk+b/bk-2b=b(2k+1)/b(k-2)=2k+1/k-2
2c+d/c-2d=2dk+d/dk-2d=d(2k+1)/d(k-2)=2k+1/k-2
=>2a+b/a-2b=2c+d/c-2d
Điều giả sử là đúng
Trần Huy làm ngắn gọn hơn mk, bn nên làm theo cách đó =)
nhưng lần sau bn vt bằng công thức do dễ đọc
tặng nhé!
Cho \(\frac{a+2c}{b+2d}=\frac{2a+c}{2b+d}\) .
CMR : \(\frac{a}{b}=\frac{a+c}{b+d};\frac{2a-c}{2b-d}=\frac{a-2c}{b-2d};\frac{a+2b}{a-b}=\frac{c+2d}{c-d}\)
cho 2a+b/a-2b = 2c+d/c-2d chung minh a/b = c/d
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Cho 2a + b + c + d/a = a + 2b + c + d/b = a + b+ 2c + d/c = a + b + c + 2d. Chứng minh rằng a = b = c
Theo bài ra ta có :
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}=\frac{0}{d}\)
\(\Rightarrow\orbr{\begin{cases}a=b=c=d\\a\ne b\ne c\ne d\end{cases}}\)(loại)
Nếu a + b + c + d \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)
=> a = b = c = d (đpcm)
cho ti le thuc a/b = c/d ,chung to rang a,3a + 2b / a = 3c + 2d / c ; b, 2a - 3b/ b = 2c - 3d / b ; c, a/ a-2b = c/c-2d giup minh voi dang can gap
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)
\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)
Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)
b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)
\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)
Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)
c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)
\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)
Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)
Cho:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Tính: P\(\frac{2a-b}{2c-d}+\frac{2b-c}{2d-a}+\frac{2c-d}{2a-b}+\frac{2d-a}{2b-c}\)
Giúp với ai nhanh mình tick cho.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4