11a + 2b = 51
cho hai số a,b nguyên tố cùng nhau . tìm (11a+2b;18a+5b) biệt 11a+2b và 18a+5b không nguyên tố cùng nhau
Gọi d là ước chung của (11a + 2b) và (18a + 5b)
\(\Rightarrow\)(11a + 2b) chia hết cho d và (18a + 5b) chia hết cho d
\(\Rightarrow\)18(11a + 2b) và 11(18a + 5b) chia hết cho d
\(\Rightarrow\)11(18a + 5b) - 18(11a + 2b) = 19b chia hết cho d
\(\Rightarrow\)19 chia hết cho d hoặc b chia hết cho d (1)
Tương tự ta cũng có: 5(11a + 2b) và 2(18a + 5b) chia hết cho d
\(\Rightarrow\)5(11a + 2b) - 2(18a + 5b) = 19a chia hết cho d
\(\Rightarrow\)19 chia hết cho d hoặc a chia hết cho d (2)
Từ (1) và (2) suy ra d là dược của 19 hoặc d là ước chung của a và b
\(\Rightarrow\)d = 19 hoặc d = 1
Vậy ước chung của (11a + 2b) và (18a + 5b) là 19 và 1
PS: Nếu đề bài bảo tìm ước chung lớn nhất thì đó là 19 nhé
\(Q=11a^2b-2a^2b-3a^2b-3a^2\) tại \(a=\dfrac{-1}{3};b=2\dfrac{3}{4}\)
\(Q=6a^2b-3a^2=6\cdot\dfrac{1}{9}\cdot\dfrac{11}{4}-3\cdot\dfrac{1}{9}=\dfrac{3}{2}\)
11a + b = 51
Biết ( a , b ) = 1 . Tìm ( 11a + 2b , 18a + 5b )
1 Tìm ( 11a + 2b ; 18a + 5b ) biết (a.b) = 1
; có nghĩa là gì vậy bạn
k tui nha
thanks
cho 11a + 2b :19 chứng minh 10a +7b :19
Để chứng minh rằng (11a + 2b) chia hết cho 19, ta cần chứng minh rằng (10a + 7b) cũng chia hết cho 19. Giả sử (11a + 2b) chia hết cho 19, tức là tồn tại số nguyên k sao cho: 11a + 2b = 19k (1) Nhân cả hai vế của phương trình (1) với 10, ta có: 110a + 20b = 190k (2) Trừ phương trình (2) cho phương trình (1), ta được: (110a + 20b) - (11a + 2b) = 190k - 19k 99a + 18b = 171k Chia cả hai vế của phương trình trên cho 19, ta có: (99a + 18b)/19 = 171k/19 5a + b = 9k Nhân cả hai vế của phương trình trên với 2, ta có: 10a + 2b = 18k Thêm cả hai vế của phương trình trên với (11a + 2b), ta có: (10a + 2b) + (11a + 2b) = 18k + 19k 21a + 4b = 37k Chia cả hai vế của phương trình trên cho 19, ta có: (21a + 4b)/19 = 37k/19 a + (2b/19) = 2k Vì a, b, và k đều là số nguyên, nên (2b/19) cũng phải là số nguyên. Điều này chỉ xảy ra khi (2b/19) là một số nguyên chia hết cho 2. Vậy, ta có thể kết luận rằng nếu (11a + 2b) chia hết cho 19, thì (10a + 7b) cũng chia hết cho 19.
ko chép
Biết ( a , b ) = 1 .Tìm ( 11a + 2b , 18 a + 5b )
cho ƯCLN(a;b)=1. hãy tìm ƯCLN(11a+2b;18a+5b)
Gọi ước chung lớn nhất của 11a + 2b và 18a + 5b là d
⇒ \(\left\{{}\begin{matrix}11a+2b⋮d\\18a+5b⋮d\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}\left(11a+2b\right).18⋮d\\\left(18a+5b\right).11⋮d\end{matrix}\right.\)⇒ \(\left\{{}\begin{matrix}198a+36b⋮d\\198a+55b⋮d\end{matrix}\right.\)
⇒198 a + 55b - (198a + 36b) ⋮ d ⇒198a + 55b - 198\(a\) - 36 b ⋮ d
⇒ (198a - 198a) + (55b - 36b) ⋮ d ⇒ 19b ⋮ d (1)
\(\left\{{}\begin{matrix}11a+2b⋮d\\18a+5b⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}\left(11a+2b\right).5⋮d\\\left(18a+5b\right)⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}55a+10b⋮d\\36a+10b⋮d\end{matrix}\right.\)
⇒ 55a +,10b - (36a + 10b) ⋮ d ⇒ 55a + 10b - 36a - 10b ⋮ d
⇒ (55a - 36a) + (10b - 10b) ⋮ d ⇒ 19a ⋮ d (2)
Kết hợp (1) và (2) ta có: \(\left\{{}\begin{matrix}19a⋮d\\19b⋮d\end{matrix}\right.\) mà d là lớn nhất nên d là ƯCLN(19a; 19b)
19a = 19.a; 19b = 19.b
Vì ƯCLN(a;b) = 1 ⇒ ƯCLN(19a; 19b) = 19 ⇒ d = 19
Cho UCLN(a,b) = 1 .Tim UCLN(11a + 2b ; 18a + 5b)