cho A = \(^{3^1+3^2+3^{^3}+.....+3^{40}}\)
a) chứng minh A chia hết cho 4 ; 10 nhưng không chia hết cho 13 , tìm dư
b) thu gọn A
Cho S = 1+3+3^2+3^3+3^4+...+3^99
a) Chứng minh rằng S chia hết cho 4
b) Chứng minh rằng S chia hết cho 40
Cho B= 1 + 3 + 3^2 + 3^3 + ......+ 3^99
a/Chứng minh B chia hết cho 4
b/Chứng minh B chia hết cho 40
a)B=1+3+32+33+....+399
=(1+3)+(32+33)+...+(398+399)
=4+32.4+....+398.4
=4.(1+32+...+398) chia hết cho 4
Vậy B chia hết cho 4
b)B=1+32+33+34+...+399
=(1+3+32+33)+....+(396+397+398+399)
=40+.........+396.40
=40.(1+....+396) chia hết cho 40
Vậy B chia hết cho 40
a)B=(1+3)+(32+33)+...+(398+399)
=(1+3)+32(1+3)+....+398(1+3)
=4+32.4+...+398.4
=4(1+32+...+398) chia hết cho4
câu b bạn vận dụng theo câu a là đc bạn nhóm 4 lại nhé mình hơi lười làm
a) B=3^0+3^1+3^2+ .............+3^99
=1(1+3)+3^2(1+3)+.................3^98(1+3)
=4+3^2.\(\times4+.............+3^{98}\times4\)
\(=4\left(1+3^2+............3^{98}\right)\)
\(\Rightarrow\)Bchia hết cho 4
C = 1 +3 +3 ^ 2 +...........+ 3 ^99 . Chứng minh rằng
a,C chia hết cho 4 b, C chia hết cho 40
C/M C\(⋮\)4
\(C=1+3+3^2+...+3^{99}⋮4\)
\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)⋮4\)
\(C=\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)⋮4\)
\(C=4+3^2.4+...+3^{98}.4⋮4\)
\(C=4.\left(1+3^2+...+3^{98}\right)⋮4\)
C/M C\(⋮\)40
\(C=1+3+3^2+...+3^{99}⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)⋮40\)
\(C=40.1+...+3^{96}.40⋮40\)
\(C=40.\left(1+...+3^{96}\right)⋮40\)
ai lạnh ko tui lạnh quá mà vẫn ko có ng iu
Cho A=3^1+3^2+3^3.....+3^2020
a)Tính tổng a
b)Chứng minh A chia hết cho 4 ,A chia hết cho 40
a) Ta có: \(A=3+3^2+3^3+...+3^{2020}\)
\(\Leftrightarrow\frac{A}{3}=1+3+3^2+...+3^{2019}\)
\(\Leftrightarrow A-\frac{A}{3}=\left(3+3^2+...+3^{2020}\right)-\left(1+3+...+3^{2019}\right)\)
\(\Leftrightarrow\frac{2}{3}A=3^{2020}-1\)
\(\Leftrightarrow A=\frac{3^{2021}-3}{2}\)
b) CM chia hết cho 4:
\(A=3+3^2+3^3+3^4+...+3^{2019}+3^{2020}\)
\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(A=3\cdot4+3^3\cdot4+...+3^{2019}\cdot4\)
\(A=\left(3+3^3+...+3^{2019}\right)\cdot4\) chia hết cho 4
CM chia hết cho 40:
\(A=3+3^2+3^3+3^4+...+3^{2017}+3^{2018}+3^{2019}+3^{2020}\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{2017}\left(1+3+3^2+3^3\right)\)
\(A=3\cdot40+...+3^{2017}\cdot40\)
\(A=\left(3+...+3^{2017}\right)\cdot40\) chia hết cho 40
1) Cho A=4+4^2+2^4+...+2^20.Hỏi A có chia hết cho 128 ko ?
2) Cho S =5+5^2+5^3+...+5^2006.
a) Tính S
b) Chứng minh: S chia hết cho 126 .
4) Cho C =3+3^2+3^3+3^4+....+3^300.Chứng tỏ C chia hết cho 40
1) Cho S=1+3+3^2+3^3+3^4+...+3^99
a) Chứng minh rằng S chia hết cho 4
b) Chứng minh rằng S chia hết cho 40
2) S= 5+5^2+5^3+5^4+...+5^96
a) Chứng minh S chia hết cho 126
b) Tìm chữ số tận cùng của S
- Giải giùm mình nha!
Cho A = 1 + 3 + 3 ^ 2 + 3 ^ 3 + .....3 ^ 11 .Chứng minh rằng :a, A chia hết cho 13 b,A chia hết cho 40
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Ủng hộ mk nha !!! ^_^
a) Ta có :
A = 1 + 3 + 32 + .... + 311
A = (1 + 3 + 32) + (33 + 34 + 35) + (36 + 37 + 38) + (39 + 310 + 311)
A = 1 . (1 + 3 + 9) + 33 . (1 + 3 + 9) + 36 . (1 + 3 + 9) + 39 . (1 + 3 + 9)
A = 1. 13 + 33 . 13 + 36 . 13 + 39 . 13
A = 13 . (1 + 33 + 36 + 39) chia hết cho 13 (ĐPCM)
b) Ta có :
A = 1 + 3 + 32 + 33 + ... + 311
A = (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310 + 311)
A = 1 . (1 + 3 + 9 + 27) + 34 . (1 + 3 + 9 + 27) + 38 . (1 + 3 + 9 + 27)
A = 1 . 40 + 34 . 40 + 38 . 40
A = 40 . (1 + 34 + 38) chia hết cho 40 (ĐPCM)
Cho A=1+3+32+..+32017.Chứng minh rằng:
a)A chia hết cho 4; A chia hết cho 13; A chia hết cho 40
b)2A+1 là một lũy thừa
a)Dễ ,bạn chỉ cần nhóm các số hạng thích hợp rồi rút thừa số chung ra là xong.Bạn tự làm
b)\(A=1+3+3^2+...+3^{2017}\)
\(3A=3+3^2+3^3+...+3^{2018}\)
\(3A-A=2A=3^{2018}-1\Rightarrow2A+1=3^{2018}\) (là một lũy thừa)
a thế thì bài mình lm đúng òi,tại không bt đúng hay hông nên mình thử hỏi các bạn
Thank bạn nha
Bài 1 :
Cho A = \(1+3+3^2+....+3^{11}\) . Chứng minh rằng :
a) A chia hết cho 13 b) A chia hết cho 40
Bài 2 :
Cho C = \(3+3^2+3^3+3^4+......+3^{100}\) . Chứng minh rằng : C chia hết cho 40 .
Bài 3 :
Cho biểu thức : M = \(1+3+3^2+3^3+......+3^{118}+3^{119^{ }}\)
a) Thu gọn biểu thức M b) Biểu thức M có chia hết cho 5 , 13 không . Vì sao ?
Bài 4 :
Cho S = \(5+5^2+5^3+5^4+5^5+5^6+.......+5^{2012}\) . Chứng minh rằng S chia hết cho 65.
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
1.a,chứng minh 12^4.54^2=36^5
b,10^6-5^7 chia hết cho 59
c,cho S=1+3^1+3^2+3^3…+3^99 chứng minh S chia hết cho 4, S chia hết cho 40
2. Tính: 10^4.27^3/6^4.15^4