Tìm x, biết: 9x^2 -16=0 (dùng hằng đẳng thức)
Tìm x ( bằng phương pháp dùng hằng đẳng thức )
1 ) \(3x^2-75=0\)
2 )\(x^3+9x^2+27x+27=0\)
3 ) \(x^3+3x^2+3x=0\)
1)3.x^2 - 75 = 0
3.x^2 - 3.25 = 0
3.(x^2-25)=0
x^2-5^2=0
(x-5)(x+5)=0
=> x-5=0 hoặc x+5=0
=> x=5 hoặc x=-5
1) \(3x^2-75=0\)
\(\Leftrightarrow3\left(x^2-25\right)=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm\sqrt{25}=\pm5\)
2) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
3) \(x^3+3x^2+3x=0\)
\(\Leftrightarrow x^3+3x^2+3x+1=1\)
\(\Leftrightarrow\left(x+1\right)^3=1^3\)
\(\Leftrightarrow x+1=1\Leftrightarrow x=0\)
2, x^3 + 9x^2 +27x + 27 = 0
x^3 + 3.x^2.3 + 3.x.3^2 +3^3 = 0
(x+3)^3=0
x+3=0
x=-3
Dùng hằng đẳng thức giải pt sau:
a) x^3-x^2-x=1/3
b) 5x^3+6x^2+12x+8=0
c)x^3=3x^2-9x+9
Phân tích đa thức thành nhân tử, dùng hằng đẳng thức
Tìm x:
1/(9x2—25)—(6x—10)=0
2/(3x+5)2—4x2=0
3/25x2—(4x—3)2=0
1/ \(\left(9x^2-25\right)-\left(6x-10\right)=0\)
\(\Leftrightarrow9x^2-6x-35=0\)
\(\Leftrightarrow\left(2x-1\right)^2-36=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+6\right)=0\)
2/ \(\left(3x+5\right)^2-4x^2=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x+5\right)=0\)
3/ \(25x^2-\left(4x-3\right)^2=0\)
\(\Leftrightarrow\left(x+3\right)\left(9x-3\right)=0\)
1) ( 9x2 - 25 ) - ( 6x - 10 ) = 0
\(\Leftrightarrow\) [ ( 3x)2 - 52 ] - 2.( 3x + 5 ) = 0
\(\Leftrightarrow\)( 3x - 5 ).( 3x + 5 ) - 2.( 3x - 5 ) = 0
\(\Leftrightarrow\) ( 3x + 5 ).( 3x + 5 - 2 ) = 0
\(\Leftrightarrow\)( 3x + 5 ).( 3x + 3 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+5=0\\3x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}3x=-5\\3x=-3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{-5}{3}\\x=-1\end{cases}}\)
Vậy x = \(\frac{-5}{3}\) , x = -1
2) ( 3x + 5 )2 - 4x2 = 0
\(\Leftrightarrow\) ( 3x + 5 - 2x ).( 3x + 5 + 2x ) = 0
\(\Leftrightarrow\)( x + 5 ).( 5x + 5 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+5=0\\5x+5=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-5\\x=-1\end{cases}}\)
Vậy x = -5 , x = -1
3) 25x2 - ( 4x - 3 )2 = 0
\(\Leftrightarrow\)( 5x )2 - ( 4x - 3 )2 = 0
\(\Leftrightarrow\) ( 5x - 4x + 3 ).(5x + 4x - 3 ) = 0
\(\Leftrightarrow\)( x + 3 ).( 9x - 3 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+3=0\\9x-3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\9x=3\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=\frac{1}{3}\end{cases}}\)
Vậy x = 3 , x = \(\frac{1}{3}\)
phân tích đa thức thành nhân tử dùng hằng đẳng thức
a/ (x^2+y^2 - 5)^2 - 4(xy-2)^2
b/ (9x^2 + 90x + 225) - (x - 7)^2
a) =( x2+y2-5)2-[2(xy-2)]2
=( x2+y2-5)2- (2xy-4)2
=(x2+y2-5+2xy-4)(x2+y2-5-2xy+4)
=[(x+y)2-9][(x-y)2-1]
phân tích tiếp HĐT 2 ở 2 thừa số
bài 1)phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử và dùng hằng đẳng thức mn(x^2+y^2)+xy(m^2+n^2)
bài 2 )tìm x biết 0,25x^3+x^2+x=0
bài 2 :
0,25x3+x2+x=0
<=>0,25x3+0,5x2+0,5x2+x=0
<=>0,25x2(x+2)+0,5x(x+2)=0
<=>(x+2)(0,25x2+0,5x)=0
<=>(x+2)x(0,25x+0,5)=0
<=>x+2=0 hoặc x=0 hoặc 0,25x+0,5=0
=>x=-2 hoặc x=0 hoặc x=-2
vậy x=0 hoặc x=-2
1. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
x^4.y^4 - z^4
(x+y+z)^2 - 4z^2
-1/9x^2 + 1/3xy - 1/4y^2
Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$
$=(xy-z)(xy+z)(x^2y^2+z^2)$
$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$
$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$
$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$
Câu trả lời của cô quá đúng luôn đấy
a) Ta có: \(x^4y^4-z^4\)
\(=\left(x^2y^2-z^2\right)\left(x^2y^2+z^2\right)\)
\(=\left(xy-z\right)\left(xy+z\right)\left(x^2y^2+z^2\right)\)
b) Ta có: \(\left(x+y+z\right)^2-4z^2\)
\(=\left(x+y+z-2z\right)\left(x+y+z+2z\right)\)
\(=\left(x+y-z\right)\left(x+y+3z\right)\)
Bằng phương pháp dùng hằng đẳng thức
9x²+6xy+y²
6x-9-x²
X²+4y²+4xy
(1)\(\left(3x\right)^2+2×3x+y^2=\left(3x+y\right)^2\)
(2)\(-x^2+6x-9=-\left(x^2-6x+9\right)=-\left(x^2-6x+3^2\right)=-\left[\left(x-3\right)^2\right]\)
(3)\(x^2+4xy+4y^2=x^2+2×x×2y^2+\left(2y\right)^2=\left(x+2y\right)^2\)
tìm x (dùng hằng đẳng thức)
a) (2x+1)2-(3x+2)2=0
b) (4x2-25)2=9(2x-5)2
chứng minh (dùng hằng đẳng thức)
- 173n-73n chia hết cho 100
- 39-8 chia hết cho 25
Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức:
16 - ( a-b)2
\(=\left(4-a+b\right)\left(4+a-b\right)\)
tìm x hằng đẳng thức x^2-9=0
x^2 -3^2=0
(x+3).(x-3)=0
x+3=0 hoặc x-3=0
x=-3 hoặc x=3
\(x^2-9=0\)
⇔ \(x^2-3^2=0\)
⇔ \(\left(x-3\right)\left(x+3\right)=0\)
⇒ \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(x=\pm3\)