Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chuột yêu Gạo
Xem chi tiết
Đinh Nho Hoàng
21 tháng 10 2017 lúc 14:08

Chứng minh:

Đặt \(\dfrac{a}{2013}=\dfrac{a}{2014}=\dfrac{a}{2015}=k\)

\(\Rightarrow a=2013k,b=2014k,c=2015k\)

Vế trái

\(4\left(2013k-2014k\right).\left(2015k-2016k\right)\)\(=4.-k.-k=4k^2\)

Vế phải

\(\left(2015k-2013k\right)^2\)\(=\left(2k\right)^2=4k^2\)

\(\Rightarrow\)4(a−b).(b−c)=(c−a)\(\Rightarrow\)đpcm

Trần Minh An
2 tháng 12 2017 lúc 20:51

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{2013}=\dfrac{b}{2014}=\dfrac{c}{2015}=\dfrac{a-b}{2013-2014}=\dfrac{b-c}{2014-2015}=\dfrac{c-a}{2015-2013}\)\(\Rightarrow\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)

\(\Rightarrow\dfrac{a-b}{-1}.\dfrac{b-c}{-1}=\left(\dfrac{c-a}{2}\right)^2\)

\(\Rightarrow\dfrac{\left(a-b\right)\left(b-c\right)}{1}=\dfrac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)

Lương Quang Trung
22 tháng 11 2018 lúc 19:03

Chứng minh:

Đặt a2013=a2014=a2015=ka2013=a2014=a2015=k

⇒a=2013k,b=2014k,c=2015k⇒a=2013k,b=2014k,c=2015k

Vế trái

4(2013k−2014k).(2015k−2016k)4(2013k−2014k).(2015k−2016k)=4.−k.−k=4k2=4.−k.−k=4k2

Vế phải

(2015k−2013k)2(2015k−2013k)2=(2k)2=4k2=(2k)2=4k2

⇒⇒4(a−b).(b−c)=(c−a).(c-a) đpcm

tnt
Xem chi tiết
Kamato Heiji
Xem chi tiết
Hồng Quang
15 tháng 2 2021 lúc 13:01

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

Hồng Quang
15 tháng 2 2021 lúc 13:11

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

Đang Quân Anh
Xem chi tiết
HaNa
25 tháng 5 2023 lúc 11:40

Theo giả thiết kết hợp sử dụng BĐT AM - GM có:

\(\left(a+b-c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-\left[c\left(a+b\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]\)

\(\le\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-2\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}=\left[\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\right]^2\)

Suy ra \(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\ge2\Leftrightarrow\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}\ge3\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge7\)

Khi đó, sử dụng BĐT Cauchy - Schwarz ta có:

\(\left(a^4+b^4+c^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\ge\left[\sqrt{\left(a^4+b^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}\right)}+1\right]^2\)

\(=\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+1\right)^2=\left[\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-1\right]^2\ge\left(7^2-1\right)^2=2304\)

Đẳng thức xảy ra khi và chỉ khi \(ab=c^2\) và \(\dfrac{a}{b}+\dfrac{b}{a}=7\)

Nguyễn Lê Phước Thịnh
25 tháng 5 2023 lúc 11:36

(a+b-c)(1/a+1/b-c)=(a+b)(1/a+1/b)+1-[c(a+b)+c(1/a+1/b)]<=(a+b)(1/a+1/b)+1-2căn (a+b)(1/a+1/b)

=[(căn (a+b)(1/a+1/b))-1]^2

=>\(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1>=2\)

=>\(\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}>=3\)

=>a/b+b/a>=7

(a^4+b^4+c^4)(1/a^4+1/b^4+1/c^4)>=[căn ((a^4+b^4)(1/a^4+1/b^4))+1]^2

=(a^2/b^2+b^2/a^2+1)^2=[(a/b+b/a)^2-1]^2>=(7^2-1)^2=2304

=>ĐPCM

tnt
Xem chi tiết
Lê Song Phương
12 tháng 5 2023 lúc 22:25

Đặt \(P=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)

\(P=\dfrac{\left(abc\right)^2}{a^3\left(b+c\right)}+\dfrac{\left(abc\right)^2}{b^3\left(c+a\right)}+\dfrac{\left(abc\right)^2}{c^3\left(a+b\right)}\)

\(P=\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ca\right)^2}{b\left(c+a\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)

\(P\ge\dfrac{\left(bc+ca+ab\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\) (BĐT B.C.S)

\(=\dfrac{ab+bc+ca}{2}\) \(\ge\dfrac{3\sqrt[3]{abbcca}}{2}=\dfrac{3}{2}\) (do \(abc=1\)).

ĐTXR \(\Leftrightarrow a=b=c=1\)

Lizy
Xem chi tiết
Akai Haruma
3 tháng 2 lúc 22:57

Lời giải:
Áp dụng BĐT AM-GM:

$\frac{a^3}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq 3\sqrt[3]{\frac{a^3}{64}}=\frac{3}{4}a$

$\frac{b^3}{(b+c)(b+a)}+\frac{b+c}{8}+\frac{b+a}{8}\geq \frac{3}{4}b$

$\frac{c^3}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq \frac{3}{4}c$

Cộng 3 BĐT trên và thu gọn:

$\Rightarrow \frac{a^3}{(a+b)(a+c)}+\frac{b^3}{(b+a)(b+c)}+\frac{c^3}{(c+a)(c+b)}\geq \frac{1}{4}(a+b+c)=\frac{1}{4}.3=\frac{3}{4}$

Vậy ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Hồ Lê Thiên Đức
Xem chi tiết
Dung Phạm
Xem chi tiết
Akai Haruma
20 tháng 3 2019 lúc 14:41

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{(b+2)(c+3)}+\frac{b+2}{36}+\frac{c+3}{48}\geq 3\sqrt[3]{\frac{a^3}{36.48}}=\frac{a}{4}\)

Tương tự:\(\frac{b^3}{(c+2)(a+3)}+\frac{c+2}{36}+\frac{a+3}{48}\geq \frac{b}{4}\)

\(\frac{c^3}{(a+2)(b+3)}+\frac{a+2}{36}+\frac{b+3}{48}\geq \frac{c}{4}\)

Cộng theo vế các BĐT trên và rút gọn ta có:

\(\frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\)

Mà cũng theo AM-GM:

\(a+b+c\geq 3\sqrt[3]{abc}=3\)

\(\Rightarrow \frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\geq \frac{29}{144}.3-\frac{17}{48}=\frac{1}{4}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

Tô Mì
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2023 lúc 23:26

\(a^2+b^2+c^2\ge ab+bc+ca=2\)

Áp dụng BĐT C-S:

\(P\ge\dfrac{\left(a+b+c\right)^2}{3-\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2+4}{3-\left(a^2+b^2+c^2\right)}\)

Đặt \(a^2+b^2+c^2=x\)

Ta cần c/m: \(\dfrac{x+4}{3-x}\ge6\Leftrightarrow x+4\ge18-6x\)

\(\Leftrightarrow x\ge2\) (đúng)

Dấu = xảy ra khi \(a=b=c=\pm\sqrt{\dfrac{2}{3}}\)