cho tam giác đèu abc có trục tâm là điểm h. số đo góc bhc bằng
cho tam giác nhọn abc,trực tâm h.Gọi k là điểm đối xứng với h qua bc.
a)chứng minh tam giác bhc và bkc bằng nhau
b)cho góc bac=70 độ .Tính số đo góc bkc
a: Ta có: H và K đối xứng nhau qua BC
nên BC là đường trung trực của HK
Suy ra: BH=BK và CH=CK
Xét ΔBHC và ΔBKC có
BH=BK
BC chung
HC=KC
Do đó: ΔBHC=ΔBKC
Bài 1.Cho tam giác nhọn ABC, trực tâm H. Gọi K là điểm đối xứng với H qua BC.
a) Chứng minh hai tam giác BHC và BKC bằng nhau.
b) Cho góc BAC=70 độ. Tính số đo góc BKC
a) Ta có:
K đối xứng với H qua BC
⇒ BC là trung trực của HK
⇒ BH=BK; CH=CK
Xét ΔBHC và ΔBKC có:
BH=BK (cmt)
CH=CK (cmt)
BC: cạnh chung
Do đó ΔBHC = ΔBKC(c.c.c)
b) Ta có:
ˆBHK = ˆBAH + ˆABH (góc ngoài của ΔABH)
ˆCHK = ˆCAH+ ˆACH (góc ngoài của ΔACH)
⇒ ˆBHC = ˆBHK + ˆCHK
= ˆBAH + ˆABH + ˆCAH + ˆACH
= ˆBAC + ˆABH + ˆACH
Ta lại có:
ˆBAC+ˆABH = 90o (BH⊥AC)
ˆBAC+ˆACH = 90o (CH⊥AB)
⇒2ˆBAC+ˆABH+ˆACH=180o
⇒ˆABH+ ˆACH = 180o− 2ˆBAC
Do đó:
ˆBHC =ˆBAC+ 180o− 2ˆBAC= 180o− ˆBAC= 180o−70o = 110o
Mặt khác:
ˆBHC = ˆBKC (ΔBHC = ΔBKC)
⇒ˆBKC=110
Cho tam giác Nhọn ABC.trực tâm H. Gọi K là điểm đối xứng với H qua BC.
a)Chứng minh hai tam giác BHC và BKC bằng nhau
b)Cho góc BAC = 70 độ . Tính số đo góc BKC
Cho tam giác ABC ,có A=60⁰; trực tâm H .Gọi M là điểm đối xứng vs H qua BC. -a) Chứng minh tam giác BHC = tâm giác BMC B) tính góc BMC
a: Ta có: M và H đối xứng nhau qua BC
nên BC là đường trung trực của MH
Suy ra: BH=BM và CH=CM
Xét ΔBHC và ΔBMC có
BH=BM
HC=MC
BC chung
Do đó: ΔBHC=ΔBMC
Cho tam giác ABC cân tại A có góc A=840 .Lấy điểm H nằm trong tam giác thỏa mãn góc: HAB=HCB=120 .Tính số đo góc BHC.
cho tam giác ABC có Â = 60o, trực tâm H. Gọi M là điểm đối xứng với H qua BC.
a) chứng minh tam giác BHC=BMC
b) tính góc BMC?
a: Ta có: M và H đối xứng nhau qua BC
nên BC là đường trung trực của MH
Suy ra: BM=BH; CM=CH
Xét ΔBHC và ΔBMC có
BH=BM
HC=MC
BC chung
Do đó: ΔBHC=ΔBMC
Cho tam giác ABC có góc A= 60 độ, trực tâm H . Gọi M là điểm đối xứng với H qua BC
a, C/M tam giác BHC = tam giác BMC
b, Tính BMC
a) Vì M đối xứng với H qua BC nên BC là đường trung trực của MH
Suy ra: BH=BM và CH=CM
Xét ΔBHC và ΔBMC có
BH=BM(cmt)
CH=CM(cmt)
BC chung
Do đó: ΔBHC=ΔBMC(c-c-c)
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn cố định (O;R) trong đó cạnh BC cố định , góc BAC có số đo bằng \(\alpha\).Gọi H là trực tâm của tam giác ABC ,I và J lần lượt là tâm cảu các đường tròn ngocij tiếp các tam giác BHC và AHC
a) Tính số đo góc BHC theo \(\alpha\)( câu này theo mình là bằng 180-\(\alpha\))
b) Chứng minh rằng góc OIC =\(\alpha\)
c) Chứng minh rằng I cố định và J nằm trên 1 đường tròn cố định
d) Gọi N là giao điểm của BJ và AI . Xác định rõ vị trí của N trên AI
Gọi P ; M lần lượt là giao điểm của CH và BH với AB và AC
a) Ta có:^CPA = ^BMA = 90o => ^HPA = ^HMA = 90o => ^HPA + ^HMA = 180o
=> Tứ giác HPAM nội tiếp
=> ^PAM + ^PHM = 180o
=> ^BHC = ^PHM = 180o - ^PAM =180o - \(\alpha\)
b) I là tâm đường tròn ngoại tiếp \(\Delta\)HBC
=> IB = IH = IC
=> \(\Delta\)IBH và \(\Delta\)IIHC cân tại I
=> ^IBH = ^IHB và ^ICH = ^IHC
=> ^IBH + ^ICH = ^IHB + ^IHC = ^BHC = \(180^o-\alpha\)
=> ^BIC = 360o - ^IBH - ^ICH - ^BHC = \(2\alpha\)
Ta lại có ^BOC = 2.^BAC = \(2\alpha\) ( góc ở tâm và góc nội tiếp cùng chắn cung BC)
=> ^BIC = ^BOC (1)
Mặt khác: OB = OC; IB = IC
=> OI là đường trung trực của BC (2)
Từ (1) ; (2) => O; I nằm khác phía so với BC
Mà \(\Delta\)BIC cân => IO là đường phân giác ^BIC
=> OIC = \(\frac{1}{2}\).^BIC = \(\alpha\)
c) Từ (b) => ^BIO = ^CIO = ^BOI = ^COI
=> BOCI là hình bình hành có OI vuông BC
=> BOCI là hình thoi
mà B; C; O cố định => I cố định
Tương tự ta cungc chứng minh được: OCJA là hình thoi
=> CJ = CO = R mà C; O cố định
=> J nằm trên đường tròn tâm C bán kính R cố định
d) AJCO là hình thoi => AJ // = OC
OCIB là hình thoi => OC // = BI
=> AJ //=BI
=> AJIB là hình bình hành có hai đường chéo AI; BJ cắt nhau tại N
=> N là trung điểm của AI
Cho tam giác ABC có góc A=70 độ, H là trực tâm tam giác đó. VẼ điểm K đối xứng vs H qa BC:
a) C/m tam giác BKC= tam giác BHC.
b) Tính góc BKC
a : Gọi O là giao của HK và CB, ta có:
S của tam giác CHB= \(\frac{1}{2}OH\cdot CB\)
S của tam giác BKC=\(\frac{1}{2}KO\cdot CB\)
Mà ta có K là điểm đối xứng với H qua BC => KO=HO
Nên ta có thể thay
S của tam giác BKC=\(\frac{1}{2}OH\cdot CB\)
Hay \(Sbkc=Sbhc\)
Nếu đúng thì cho mk xin **** nha