Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Minh Thu
Xem chi tiết
Omo Matic
Xem chi tiết
Nguyễn Huy Hoàng
Xem chi tiết
HD Film
30 tháng 9 2019 lúc 23:56

\(\frac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\)

\(=\frac{1}{\sqrt{n-1}\sqrt{n}\left(\sqrt{n-1}+\sqrt{n}\right)}\)

\(=\frac{\sqrt{n-1}-\sqrt{n}}{\sqrt{n-1}\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\)

Sau đó bạn tự áp dụng vào nhé!

Phong Lê
Xem chi tiết
HT.Phong (9A5)
22 tháng 9 2023 lúc 18:47

\(\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}+\sqrt{2}}{3-2}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}-\sqrt{3}\)

\(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}-\sqrt{3}\)

\(=2\sqrt{3}-\sqrt{3}\)

\(=\sqrt{3}\)

Dương An Hạ
Xem chi tiết
Nguyệt
21 tháng 7 2019 lúc 16:49

\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)

\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)

\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)

Nguyệt
21 tháng 7 2019 lúc 16:54

b) vì \(\sqrt{5}-\sqrt{12}< 0\), ta có: 

 \(5\sqrt{5}-2\sqrt{3}=4\sqrt{5}+\sqrt{5}-\sqrt{12}< 4\sqrt{5}< 4\sqrt{5}+6\) 

Vậy \(5\sqrt{5}-2\sqrt{3}< 6+4\sqrt{5}\)

Nguyệt
21 tháng 7 2019 lúc 16:57

c)\(\sqrt{2}-\sqrt{6}=\sqrt{2}.\left(\sqrt{1}-\sqrt{3}\right)>\left(1-\sqrt{3}\right)\)

Vậy \(\sqrt{2}-\sqrt{6}>1-\sqrt{3}\)

Shaaaaaa
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 14:44

a: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}+\sqrt{2}}=\dfrac{\left(5+2\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}=\dfrac{5\sqrt{5}-5\sqrt{2}+10-2\sqrt{10}}{3}\)

b: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)

Hoàng Ngọc Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 9 2023 lúc 18:31

a: ĐKXĐ: 2x+5>=0 và 1-x>=0

=>-5/2<=x<=1

PT =>2x+5=1-x

=>3x=-4

=>x=-4/3(nhận)

b: ĐKXĐ: x^2-x>=0 và 3-x>=0

=>x<=3 và (x>=1 hoặc x<=0)

=>x<=0 hoặc (1<=x<=3)

PT =>x^2-x=3-x

=>x^2=3

=>x=căn 3(nhận) hoặc x=-căn 3(nhận)

c: ĐKXĐ: 2x^2-3>=0 và 4x-3>=0

=>x>=3/4 và x^2>=3/2

=>x>=3/4 và \(\left[{}\begin{matrix}x>=\dfrac{\sqrt{6}}{4}\\x< =\dfrac{-\sqrt{6}}{4}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x>=\dfrac{3}{4}\\x< =-\dfrac{\sqrt{6}}{4}\end{matrix}\right.\)

PT =>2x^2-3=4x-3

=>2x^2-4x=0

=>2x(x-2)=0

=>x=0(loại) hoặc x=2(nhận)

HT.Phong (9A5)
16 tháng 9 2023 lúc 18:37

\(\sqrt{2x+5}=\sqrt{1-x}\) (ĐK: \(-\dfrac{5}{2}\le x\le1\)

\(\Leftrightarrow2x+5=1-x\)

\(\Leftrightarrow2x+x=1-5\)

\(\Leftrightarrow3x=-4\)

\(\Leftrightarrow x=-\dfrac{4}{3}\left(tm\right)\)

b) \(\sqrt{x^2-x}=\sqrt{3-x}\) (ĐK: \(\left[{}\begin{matrix}1\le x\le3\\x\le0\end{matrix}\right.\))

\(\Leftrightarrow x^2-x=3-x\)

\(\Leftrightarrow x^2=3\)  

\(\Leftrightarrow x=\pm\sqrt{3}\left(tm\right)\)  

c) \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (ĐK: \(x\ge\dfrac{\sqrt{6}}{2}\)

\(\Leftrightarrow2x^2-3=4x-3\)

\(\Leftrightarrow2x^2=4x\)

\(\Leftrightarrow x^2=2x\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

Nguyễn Yến Vy
Xem chi tiết
Thùy Linh Bùi
Xem chi tiết