Bài 1: Tìm M biết: 75% x m+ 3/4x m+m=30
Bài 3: Rút gọn biểu thức: a) (a+1)^2-(a-1)^2-3(a+1)(a-1) b) (m^3-m+1)2+(m^2-3)^2-2(m^2-3)(m^3-m+1) Bài 4: Tìm x, biết: a) ( 5x +1)^2 – ( 5x +3)( 5x – 3) = 3 b) (3x-5)(5-3x)+9(x+1)^2=30 c) (x+4)^2-(x+1)(x-1)=16 Bài 5: So sánh hai số A và B: a) A=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^(16)+1) và B=3^(32)-1 b) và A= 2011.2013 và B=2012^2 Bài 6: a) C/ m HĐT : (a+b+ c)^2 = a^2 +b^2 + c^2 +2ab +2ac + 2bc b)Áp dụng: cho x^2 + y^2 + z^2 = 5. Tính giá trị biểu thức: A = ( 2x + 2y – z)^2 + ( 2y + 2z – x)^2 + ( 2z+2x – 2y)^2 Bài 7: Cho 5x^2 + 5y^2 + 8xy - 2x + 2y +2 = 0 Tính giá trị biểu thức B = ( x + y ) ^2018 + ( x -2)^ 2019 + ( y +1)^2020
\(3,\\ a,=a^2+2a+1-a^2+2a-1-3a^2+3=-3a^2+4a+3\\ b,=\left(m^3-m+1-m^2+3\right)^2=\left(m^3-m^2-m+4\right)^2\\ 4,\\ a,\Leftrightarrow25x^2+10x+1-25x^2+9=3\\ \Leftrightarrow10x=-7\Leftrightarrow x=-\dfrac{7}{10}\\ b,\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\\ \Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\\ c,\Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)
Giải dúp bài này theo phương pháp lớp 3: tìm m biết m x 5 + m = 30
m x 5 + m = 30
m x 6 = 30
m = 30 : 6
m = 5
Ta có :
m x 5 + m = 30
m x 5 + m x 1 = 30
m x ( 5 + 1 ) = 30
m x 6 = 30
m = 30 : 6
m = 5
~ Hok tốt ~
#Gumball
Cho các đa thức M(x)=-2x^3+4x+x^2-3 và N(x)= 2x^3+x2-5-4x 1) Tính P(x) = M(x) + N(x) 2) Tìm nghiệm của đa thức P(x) 3) Tìm đa thức Q(x) biết Q(x) + N(x) = M(x)
1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2
1, Tìm x biết :
a, 4x - 15 = 75 - x
b, 72 - 3x = 5x + 8
c, 3| x - 7 | = 21
2, Tìm n thuộc Z biết n - 3 là ước của 7
a/ \(4x-15=75-x\)
\(\Leftrightarrow4x+x=75+15\)
\(\Leftrightarrow5x=90\)
\(\Leftrightarrow x=19\)
Vậy ...
b/ \(72-3x=5x+8\)
\(\Leftrightarrow72-8=5x+3x\)
\(\Leftrightarrow64=8x\)
\(\Leftrightarrow x=8\)
Vậy ....
c/ \(3\left|x-7\right|=21\)
\(\Leftrightarrow\left|x-7\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=7\\x-7=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=0\end{matrix}\right.\)
d/ \(x-3\inƯ\left(7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=7\\x-3=-1\\x-3=-7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=10\\x=2\\x=-4\end{matrix}\right.\)
Vậy ..
Cho M(x) = 2x^5 - 4x^3 + 2x^2 + 10x - 1
và N(x) = -2x^5 + 2x^4 + 4x^3 + x^2 + x - 10
a/. Tính M(x) + N(x)
b/. Tìm A(x), biết A(x) + M(x) = N(x)
a/Ta có: M(x)+N(x) = (2x5 - 4x3 + 2x2 + 10x - 1) + (-2x5 + 2x4 + 4x3 + x2 + x - 10)
= 2x5 - 2x5 - 4x3 + 4x3 + 2x4 + 2x2 + x2 + 10x + x -1 - 10
= 2x4 + 3x2 + 11x - 11
b/ Ta có: A(x) = N(x)-M(x) = (-2x5 + 2x4 + 4x3 + x2 + x - 10) - (2x5 - 4x3 + 2x2 + 10x - 1)
= -2x5 - 2x5 + 2x4 + 4x3 + 4x3 + x2 - 2x2 + x - 10x -10 + 1
= -2x5 + 2x4 + 8x3 - x2 - 9x -9
Tham khảo thanh này để soạn đề chính xác hơn nha :vvv
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)
\(=\dfrac{-1}{\sqrt{x}-2}\)(1)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức (1), ta được:
\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)
Bài 1: Cho pt ẩn x: x2 - 2(m+1) x + m2 - m = 0 (1)
a) Giải pt (1) khi m = -1, m = 0
b) Tìm m để pt (1) có 1 nghiệm là 1. Tìm nghiệm còn lại.
c) Trong trường hợp pt (1) có 2 nghiệm hãy tính: x12 + x22; (x1-x2)2.
Bài 2: Cho pt: x2 - 4x + 3 = 0
Tính giá trị biểu thức:
a) x12 + x22
b) \(\dfrac{1}{x1+2}+\dfrac{1}{x2+2}\)
c) x13 + x23.
d) x1 - x2.
Bài 2:
a: \(x^2-4x+3=0\)
=>x=1 hoặc x=3
\(x_1^2+x_2^2=1^2+3^2=10\)
b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)
c: \(x_1^3+x_2^3=1^3+3^3=28\)
d: \(x_1-x_2=1-3=-2\)
Bài 1:a)Tìm x biết:4x-2=x
b)Tìm hàm số y=ã biết đồ thị của nó đi qua điểm M(1;3)
c)Tìm x,y,z biết:x=y/2=z/3 và x+y+z+180
a) \(4x-2=x\)
\(4x-x=2\)
\(3x=2\)
\(x=\dfrac{2}{3}\)
b) Thay \(x=1,y=3\) ta có \(3=a.1\Rightarrow a=3\)
Vậy hàm số cần tìm là \(y=3x\)
c) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{x+y+z}{1+2+3}=\dfrac{180}{6}=30\)
\(\Rightarrow\left\{{}\begin{matrix}x=30\times1=30\\y=30\times2=60\\z=30\times3=90\end{matrix}\right.\)
Tìm m biết : 75% x m + x m + m = 125