1, So sánh
a, 12580 và 25118
b,291 và 535
c,10750 và 7375
d, 544 và 2112
e, 2115 và 275 . 498
Bài 8: So sánh:
a) 2225 và 3150
b) 291 và 535
c) 9920 và 999910
Bài 9: Chứng minh đẳng thức:
a) 128 . 1816
b) 7520 = 4510 . 530
Bài 8:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
Bài 1: So sánh
1/ a) 2300 và 3200 b) 9920 và 999910 c) 3500 và 7300
d) 202303 và 303202 e) 10750 và 7375
a) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
c) \(3^{500}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=\left(7^3\right)^{100}=343^{100}>243^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
\(\left(d\right):202^{303}=\left(202^3\right)^{101}=8242408^{101}>303^{202}=\left(303^2\right)^{101}=91809^{101}\)
\(\left(e\right):107^{50}=\left(107^2\right)^{25}=11449^{25}< 73^{75}=\left(73^3\right)^{25}=389017^{25}\)
Cho A = - 5 6 . 12 - 7 . - 21 15 v à B = 1 6 . - 9 8 . - 12 11 . So sánh A và B
A. A > B
B. A < B
C. A = B
D. A ≥ B
So sánh
2115 và 275.498
2115 = (7.3)15 = 715.315
275.498 = (33)5.(72)8 = 315.716 = 7.315.715 > 315.715 = 2115
=> 275.498 > 2115.
So sánh các số sau số nào lớn hơn
a)523 và 6.522
b)7.213 và 216
c)2115 và 275.498
a: 5^23=5*5^22<6*5^22
=>6*5^22 lớn hơn
b: 7<8
=>7*2^13<8*2^13=2^16
=>2^16 lớn hơn
c: 21^15=3^15*7^15
27^5*49^8=3^15*7^16
mà 15<16
nên 27^5*49^8 lớn hơn
a) Ta có:
5²³ = 5.5²²
Do 6 > 5 nên 6.5²² > 5.5²²
Vậy 6.5²² > 5²³
b) Ta có:
2¹⁶ = 2³.2¹³ = 8.2¹³
Do 8 > 7 nên 8.2¹³ > 7.2¹³
Vậy 2¹⁶ > 7.2¹³
c) Ta có:
21¹⁵ = (3.7)¹⁵ = 3¹⁵.7¹⁵
27⁵.49⁸ = (3³)⁵.(7²)⁸ = 3¹⁵.7¹⁶
Do 16 > 15 nên 7¹⁶ > 7¹⁵
⇒ 3¹⁵.7¹⁶ > 3¹⁵.7¹⁵
Vậy 27⁵.49⁸ > 21¹⁵
Cho A = - 5 6 . 12 - 7 . - 21 15 ; B = 1 6 . 9 - 8 . - 12 11 . So sánh A và B
A. A > B
B. A < B
C. A = B
D. A ≥ B
1 Thu gọn biểu thức
D = 5 + 52 + 53 + .... +5100
2 So sánh
a) 544 và 2112
b) 339 và 1121
c) 20160 và 39845
Bài 1:
D = 5 + 52 + 53+...+ 5100
5.D = 52 + 53+...+5 100 + 5101
5D - D = 5101 - 5
4D = 5101 - 5
D = \(\dfrac{5^{101}-5}{4}\)
Bài 2:
So sánh
a, 544 = (2.33)4 = 24.312
2112 = (3.7)12 = 312.712
Vì 24 < 712 nên 544 < 2112
b, 339 và 1121
339 = (313)3
1121 = (117)3
313 = (32)6.3 = 96.3 < 97 < 117
Vậy 339 < 1121
1 Thu gọn biểu thức
D = 5 + 52 + 53 + ... + 5100
2 So sánh
a) 544 và 2112
b) 339 và 1121
c) 20160 và 39845
1) \(D=5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=1+5+5^2+5^3+...+5^{100}\)
\(\Rightarrow D+1=\dfrac{5^{100+1}-1}{5-1}\)
\(\Rightarrow D+1=\dfrac{5^{101}-1}{4}\)
\(\Rightarrow D=\dfrac{5^{101}-1}{4}-1=\dfrac{5^{101}-5}{4}=\dfrac{5\left(5^{100}-1\right)}{4}\)
2)
a) \(21^{12}=\left(21^3\right)^4=9261^4>54^4\Rightarrow54^4< 21^{12}\)
b) \(3^{39}< 3^{40}=\left(3^2\right)^{20}=9^{20}< 11^{20}< 11^{21}\)
\(\Rightarrow3^{39}< 11^{21}\)
c) \(201^{60}=\left(201^4\right)^{15}=\text{1632240801}^{15}\)
\(398^{45}=\left(398^3\right)^{15}=\text{63044792}^{15}< \text{1632240801}^{15}\)
\(201^{60}>398^{45}\)
Bài 1: So sánh các số sau? (n thuộc N* )
a) 2711 và 818.
b) 6255 và 1257
c) 536 và 1124
d) 32n và 23n
Bài 2: So sánh
a) 523 và 6.522
b) 7.213 và 216
c) 2115 và 275.498
sorry nghe h tớ gửi quá 100 tin nhắn nên nó ko cho gửi
Bài 1
a)2711>818
b)6255>1257
c)536<1124
d)32n>23n
Bài 2
a)523<6.522
b)7.213>216
c)2115<275.498
bạn ơi bạn viết rõ hơn đi số mũ bạn bấm shift 6
so sánh phân số bằng cách hợp lý
24/32 và 9/21
15/25 và 12/15
5/6 và 15/24
5/6 và 6/5
7/5 và 5/3
16/5 và 17/6
a: 24/32=3/4
9/21=3/7
mà 3/4>3/7
nên 24/32>9/21
b: 15/25=3/5
12/15=4/5
mà 3/5<4/5
nên 15/25<12/15
c: 5/6<1<6/5
d: 7/5=1+2/5
5/3=1+2/3
mà 2/5<2/3
nên 7/5<5/3
e: 16/5=96/30
17/6=85/30
mà 96>85
nên 16/5>17/6