Cho A = \(\frac{3n^2+3n}{12n}\) ; B = \(\frac{6n+1}{12n}\)
Với n \(\in\) N*
Hỏi A,B là số thập phân hữu hạn hay số thập phân vô hạn tuần hoàn ?
Với mọi số tự nhiên n khác 0, khi viết các phân số sau dưới dạng số thập phân, ta được số thập phân hưu hạn hay vô hạn:
a) \(\frac{3n^2+3n}{12n}\)
b)\(\frac{6n+1}{12n}\)
a: \(\dfrac{3n^2+3n}{12n}=\dfrac{3n\left(n+1\right)}{12n}=\dfrac{n+1}{4}\)
=>viết được dưới dạng số thập phân hữu hạn
b: 6n+1/12n là phân số tối giản nên phân số này viết được dưới dạng số thập phân vô hạn tuần hoàn
Tìm n để biểu thức sau là số nguyên :
\(A=\frac{2n+1}{n+2}-\frac{n+1}{n+2}+\frac{3n+5}{2n+4}+\frac{4n+6}{3n+6}-\frac{10n+12}{5n+10}-\frac{12n+3}{4n+8}\)
CMR với mọi n thuộc N thì phân số sau là phân số tối giản
a)\(\frac{5n+2}{3n+1}\)
b)\(\frac{2n+5}{3n+7}\)
c)\(\frac{12n+1}{30n+2}\)
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Tìm nϵN sao cho 12n-3⋮(3n-2)
Lời giải:
$12n-3\vdots 3n-2$
$\Rightarrow 4(3n-2)+5\vdots 3n-2$
$\Rightarrow 5\vdots 3n-2$
$\Rightarrow 3n-2\in\left\{1; -1;5;-5\right\}$
$\Rightarrow n\in\left\{1; \frac{1}{3}; \frac{7}{3}; -1\right\}$
Vì $n\in\mathbb{N}$ nên $n=1$
Ta có:
12n - 3 = 12n - 8 + 5 = 4(3n - 2) + 5
Để (12n - 3) ⋮ (3n - 2) thì 5 ⋮ (3n - 2)
⇒ 3n - 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ 3n ∈ {-3; 1; 3; 7}
⇒ n ∈ {-1; 1/3; 1; 7/3}
Mà n ∈ ℕ
⇒ n = 1
Với mọi số tự nhiện n khác 0, khi viết các phận số sau dưới dạng số thập phân, ta được số thập phận hữu hạn hay vô hạn, nếu đây là số thập phân vô hạn thì là số thập phân vô hạn tuần hoàn đơn hay kép
\(a,\frac{3n^2+3n}{12n}\) \(b,\frac{6n+1}{12n}\)
Tìm n thuộc N biết A= (3n^2+3n)/12n để viết được dưới dạng số thập phân hữu hạn
Giải
Hiệu số tuổi bố và con không bao giờ thay đổi.
Hiện nay tuổi con bằng 1/6 tuổi bố. Vậy tuổi bố bằng:
6/6-1 = 6/5 (hiệu )
Sau 4 năm thì tuổi bố bằng:
4/4-1 = 4/3 ( hiệu )
4 năm thì bằng:
4/3 – 6/5 = 2/15 ( hiệu )
Hiệu của tuổi hai bố con là:
4 : 2/15 = 30 ( tuổi )
Tuổi con hiện nay là:
30 : ( 6 - 1 ) = 6 ( tuổi )
Tuổi bố hiện nay là:
6 x 6 = 36 ( tuổi )
Đáp số:
Con: 6 tuổi
Bố: 36 tuổi
Chứng minh rằng phân số sau tối giản với n thuộc Z
a, \(\frac{3n}{3n+1}\)
b, \(\frac{4n+1}{6n+1}\)
c, \(\frac{12n+1}{30n+2}\)
d, \(\frac{21n+4}{14n+3}\)
e, \(\frac{3n-2}{4n-3}\)
g, \(\frac{15n+1}{30n+1}\)
h, \(\frac{n^3+2n}{n4+3n^2+1}\)
a, \(\frac{3n}{3n+1}\)
Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z
\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1
\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản
Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )
b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)
Đề bài sai
Các câu c,d,e,g,h tương tự
Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1
Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1
chung minh \(\frac{12n+1}{3n+2}\)là phân số tối giản
gọi d là UCLN(12n+1;3n+2)
<=>4(3n+2)-12n+1 chia hết d
=>12n+2-12n+1 chia hết d
=>1 chia hết d
=>d=1
=>\(\frac{12n+1}{3n+2}\) là phân số tối giản
Gọi A là ƯCLN(12n+1/3n+2)
=>12n+1 chia hết cho A
3n+2 chia hết cho A
=>A thuộc ƯC(2,1)={1;-1}
=>A={1;-1}
Vậy 12n+1/3n+2 là phân số tối giản
CMR với mọi n thuộc N thì các phân số sau là phân số tối giản
a)\(\frac{5n+2}{3n+1}\)
b)\(\frac{2n+5}{3n+7}\)
c)\(\frac{12n+1}{30n+2}\)
Gợi ý thôi chứ giải ra dài lắm !!
\(\frac{a}{b}\) tối giản khi và chỉ khi UCLN(a;b)=1