Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phước Lộc
Xem chi tiết
Minh Nguyen
28 tháng 2 2020 lúc 16:43

\(ĐKXĐ:x\ne1\)

Ta có :

 \(x^2-2x+1=\left(x-1\right)^2>0\)(TH = 0 bị loại)

\(\Rightarrow\)Để \(A_{min}\Leftrightarrow3x^2-8x+6\)min

Có :\(3x^2-8x+6=\left(\sqrt{3}x+\frac{4\sqrt{3}}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

Dấu " = " xảy ra :

\(\Leftrightarrow\sqrt{3}x+\frac{4\sqrt{3}}{3}=0\)

\(\Leftrightarrow x=-\frac{4}{3}\)(tm)

Vậy \(A_{min}=\frac{\frac{2}{3}}{\left(-\frac{4}{3}-1\right)^2}=\frac{6}{49}\Leftrightarrow x=-\frac{4}{3}\)

Khách vãng lai đã xóa
NguyenThiThao
Xem chi tiết
đoàn danh dũng
Xem chi tiết
Nguyễn Minh
Xem chi tiết
Hoàng Đức Khải
14 tháng 12 2017 lúc 16:53

\(A=\frac{3x^2+8x+6}{x^2+2x+1}\) \(\left(x\ne\pm1\right)\)

\(A=\frac{\left(3x^2+6x+3\right)+\left(2x+3\right)}{\left(x+1\right)^2}\)

\(A=\frac{3\left(x+1\right)^2+2x+3}{\left(x+1\right)^2}\)

\(A=3+\frac{2x+3}{\left(x+1\right)^2}\)

\(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow3+\frac{2x+3}{\left(x+1\right)^2}\ge3\Leftrightarrow A\ge3\)

Dấu "="xảy ra khi \(2x+3=0\Rightarrow x=\frac{-3}{2}\)

Lê Minh Tú
14 tháng 12 2017 lúc 16:59

Gọi k là một giá trị của A ta có: 

\(\frac{\left(3x^2-8x+6\right)}{\left(x^2+2x+1\right)}=k\)

\(\Leftrightarrow3x^2-8x+6=k\left(x^2-2x+1\right)\)

\(\Leftrightarrow\left(3-k\right)x^2-\left(8-2k\right)x+6-k=0\)(*)

Ta cần tìm k để PT (*) có nghiệm 
Xét: \(\Delta=\left(8-2k\right)^2-4\left(3-k\right)\left(6-k\right)=64-32k+4k^2-4\left(18-9k+k^2\right)=4k-8\)

Để PT (*) có nghiệm thì: \(\Delta\ge0\Leftrightarrow4k-8\ge0\Leftrightarrow k\ge2\)

Dấu "=" xảy ra khi: \(-\left(8-2.2\right)x+6-2=0\Leftrightarrow-4x+4=0\Rightarrow x=1\)

Vậy: \(B\ge2\)suy ra: B = 2 khi x = 1

Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 14:01

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

Trương Anh Kiệt
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 9 2021 lúc 15:57

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

Dấu \("="\Leftrightarrow x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x=1\)

\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)

Dấu \("="\Leftrightarrow x=-1\)

Nguyễn Việt Lâm
11 tháng 9 2021 lúc 16:00

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

\(A_{min}=-7\) khi \(x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(B_{min}=-\dfrac{1}{4}\) khi \(x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

\(C_{min}=-4\) khi \(x=1\)

Biểu thức D không tồn tại cả max lẫn min

Akai Haruma
11 tháng 9 2021 lúc 17:09

1.

$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow A\geq 2.0-7=-7$

Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$

2.

$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$

Vậy $B_{\min}=-0,25$ khi $x=-1,5$

3.

$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$

Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$

4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất

Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$

Trương Anh Kiệt
Xem chi tiết
Minh Hiếu
10 tháng 9 2021 lúc 20:50

A\(=2x^2-8x+1\)

=2x(x-4)+1≥1

Min A=1 ⇔x=4

B=\(x^2+3x+2\)

\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\)

Min B=-1/4⇔x=-3/2

Minh Hiếu
10 tháng 9 2021 lúc 20:55

C=\(4x^2-8x\)

=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)

=(2x-4)^2 -16≥-16

Min C=-16 ⇔x=2

Minh Hiếu
10 tháng 9 2021 lúc 21:00

D=\(\dfrac{1}{-\left(x^2-2x+1\right)+6}\)

=\(\dfrac{1}{-\left(x-1\right)^2+6}\)\(\dfrac{1}{6}\)

Min D=1/6 ⇔x=1

konomi
Xem chi tiết
Tuyết Ly
Xem chi tiết