Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
camcon
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2023 lúc 21:47

\(S=3C_0^n+\left(4+3\right)C_n^1+\left(4.2+3\right)C_n^2+...+\left(4n+3\right)C_n^n=S_1+S_2\)

Với \(S_1=3\left(C_n^0+C_n^1+...+C_n^n\right)\)

Dễ dàng thấy \(S_1=3.2^n\)

\(S_2=4.C_n^1+4.2C_n^2+...+4.n.C_n^n=4\left(1C_n^1+2C_n^2+...+nC_n^n\right)\)

Nhận thấy tất cả các số hạng \(S_2\) đều có dạng \(k.C_n^k\)

Ta có: \(k.C_n^k=k.\dfrac{n!}{k!\left(n-k\right)!}=\dfrac{n!}{\left(k-1\right)!\left(n-k\right)!}=n.\dfrac{\left(n-1\right)!}{\left(k-1\right)!.\left[\left(n-1\right)-\left(k-1\right)\right]!}=n.C_{n-1}^{k-1}\)

Nên:

\(S_2=4\left(nC_{n-1}^0+nC_{n-1}^1+...+nC_{n-1}^{n-1}\right)=4n.2^{n-1}=2n.2^n\)

Vậy \(S=S_1+S_2=\left(2n+3\right).2^n\)

phạm thị diễm quỳnh
Xem chi tiết
WANNAONE 123
Xem chi tiết
WANNAONE 123
Xem chi tiết
Ngọc Hân Cao Dương
Xem chi tiết
Trần Võ Vân Anh
Xem chi tiết
nguyentrungthangliioneky...
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 14:38

Câu 6:

Số giao điểm là:

\(\dfrac{2006\cdot2005}{2}=2011015\left(điểm\right)\)

Le Giang
Xem chi tiết
Đàm Nhân Giang
11 tháng 3 2019 lúc 21:09

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

Nguyễn Khánh Toàn
Xem chi tiết
Đặng Ngô Minh Nhật
Xem chi tiết