cho n là một số tự nhiên. rút gọn biểu thức: S=3xnC0 +7xnC1+11xnC2+...+(4n+3)xnCn
Cho n là số tự nhiên. Thu gọn biểu thức S = \(3C^0_n+7C^1_n+11C^2_n+...+\left(4n+3\right)C^n_n\) theo n
\(S=3C_0^n+\left(4+3\right)C_n^1+\left(4.2+3\right)C_n^2+...+\left(4n+3\right)C_n^n=S_1+S_2\)
Với \(S_1=3\left(C_n^0+C_n^1+...+C_n^n\right)\)
Dễ dàng thấy \(S_1=3.2^n\)
\(S_2=4.C_n^1+4.2C_n^2+...+4.n.C_n^n=4\left(1C_n^1+2C_n^2+...+nC_n^n\right)\)
Nhận thấy tất cả các số hạng \(S_2\) đều có dạng \(k.C_n^k\)
Ta có: \(k.C_n^k=k.\dfrac{n!}{k!\left(n-k\right)!}=\dfrac{n!}{\left(k-1\right)!\left(n-k\right)!}=n.\dfrac{\left(n-1\right)!}{\left(k-1\right)!.\left[\left(n-1\right)-\left(k-1\right)\right]!}=n.C_{n-1}^{k-1}\)
Nên:
\(S_2=4\left(nC_{n-1}^0+nC_{n-1}^1+...+nC_{n-1}^{n-1}\right)=4n.2^{n-1}=2n.2^n\)
Vậy \(S=S_1+S_2=\left(2n+3\right).2^n\)
cho biểu thức A=(2n+1)/(n-3) + (3n-5) /(n-3) - (4n-5) / (n-3)
a)Rút gọn A
b)tìm số tự nhiên n để A nhận giá trị là số nguyên
c)tìm số nguyên n để phân số A sau khi rút gọn là phân số tối giản
Tìm số tự nhiên n (100<n<200) 8n+17/4n+3 là phân số rút gọn được
Tìm số tự nhiên n (100<n<200) 8n+17/4n+3 là phân số rút gọn được
tìm số tự nhiên n để A=\(\dfrac{8n+193}{4n+3}\) sao cho:
a) A có giá trị là số tự nhiên?
b) A là phân số tối giản?
c) n trong khoảng 150 đến 170 thì phân số A rút gọn được?
cho biểu thức D=21n+3/6n+4. tìm số tự nhiên n để D rút gọn được
Câu 1 : (2 điểm) Cho biểu thức
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số sao cho và
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n Î N* Hãy so sánh và
b. Cho A = ; B = . So sánh A và B.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ : a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
Câu 6:
Số giao điểm là:
\(\dfrac{2006\cdot2005}{2}=2011015\left(điểm\right)\)
Tìm số tự nhiên n sao cho phân số A=8n+193/4n+3
a)có giá trị là số tự nhiên
b)là phân số tối giản
c)với giá trị n (150 nhỏ hơn hoặc bằng n nhỏ hơn hoặc bằng 170) thì phân số A rút gọn được
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Tiìm số tự nhiên n để phân số : A= 8n + 193/ 4n+3
a) Có giá trị là số tự nhiên
b) Là phân số tối giản
c) Với 150 <= n <= 170 thì A rút gọn được
Cho biểu thức: D=\(\frac{21n+3}{6n+4}\).Tìm số tự nhiên n để D rút gọn được.