\( \)Cho hàm số
\( f(x)=\begin{cases}x^2-1&\text{khi }x\geq2\\ x^2-2x+3&\text{khi }x<2\end{cases} \)
Tích phân 0ʃπ/2 f(2sinx + 1 )cosxdx bằng ?
1,cho hàm số y=f(x)=\(\hept{\begin{cases}x+1voix>=0\\-x-1voix< 1\end{cases}}\)
a,viết biểu thức xác định f(x)
b,tìm x khi f(x)=2
cho hàm số f(x)=\(\begin{cases} \sqrt{2x-4}+3 \\ \dfrac{x+2}{x^2-2mx+m^2+2} \end{cases} \)(trên) khi x≥2, (dưới) khi x<2. Tìm các giá trị của tham số thực m để hàm số liên tục trên R
\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\sqrt{2x-4}+3\)
\(=\sqrt{2\cdot2-4}+3=3\)
\(f\left(2\right)=\sqrt{2\cdot2-4}+3=0+3=3\)
\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{x+2}{x^2-2mx+m^2+2}\)
\(=\dfrac{2+2}{2^2-2m\cdot2+m^2+2}=\dfrac{4}{m^2-4m+6}\)
Để hàm số f(x) liên tục trên R thì f(x) liên tục tại x=2
=>\(\dfrac{4}{m^2-4m+6}=3\)
=>\(4=3\left(m^2-4m+6\right)\)
=>\(3m^2-12m+18-4=0\)
=>\(3m^2-12m+14=0\)
\(\Leftrightarrow3m^2-12m+12+2=0\)
=>\(3\left(m-2\right)^2+2=0\)(vô lý)
=>\(m\in\varnothing\)
Cho hàm số f=\(\hept{\begin{cases}2x;x\ge0\\\frac{-1}{2}x;x< 0\end{cases}}\)
Vẽ đồ thị hàm số khi xác định 2 điểm A;B
Chứng minh tam giác OAB vuông tại O
Cho hàm số f(x)=\(\hept{\begin{cases}-2x+7,x< 5\\x+9,x\ge5\end{cases}}\).Khi đó f(3)=
\(f(x) = \begin{cases} \dfrac{x^2-6x+8}{\sqrt{3x+2}-2} \ khi \ x < 2 \\ \dfrac{x+8}{x-1} \ khi \ x \geq 2 \\\end{cases}
tại x_0 =2.\) Xét tính liên tục của hàm số:
\(\lim\limits_{x->2^-}=\dfrac{2^2-6\cdot2+8}{\sqrt{3\cdot2+2}-2}=0\)
\(\lim\limits_{x->2^+}=\dfrac{2+8}{2-1}=10< >0\)
=>f(x) không liên tục tại x=2
Cho hàm số f được xác định bởi công thức sau:
f(x) = \(\hept{\begin{cases}x+1vớix\ge0\\1-2xvớix< 0\end{cases}}\)
a, Tính f(2); f(-2) ; f(0) ; f\(\left(\frac{1}{2}\right)\)
Cho hàm số y = f (x) được xác định bởi công thức:
y=f(x)=\(\hept{\begin{cases}0,5x-3khix>=6\\3-0,5xkhix< 6\end{cases}}\)
Tính: f (-2)
1,Cho hàm số f(x)=\(\hept{\begin{cases}-2x+7,x< 5\\x+9,x>=5\end{cases}}\)
Tính f(3)=?
2, Giá trị lớn nhất của A=x - |x|
( Mong mn có thể giải chi tiết giúp mình, cảm ơn nhiều!!!!!!)
1 ) \(f\left(3\right)\Rightarrow x=3\)
Vì \(3< 5\Rightarrow f\left(3\right)=-2.3+7,3=-6+7,3=1,3\)
2 ) Để \(A=x-\left|x\right|\) đạt GTLN <=> \(\left|x\right|\)đạt GTNN
Mà \(\left|x\right|\ge0\forall x\) => \(\left|x\right|\) có GTNN là 0 tại x = 0
=> \(A=x-\left|x\right|\)có GTLN là 0 tại x = 0
AE cho mình hỏi với :
Cho hàm số \(f\left(x\right)=\hept{\begin{cases}sinx,cosx\ge0\\1+cosx,cosx< 0\end{cases}}\). Hỏi hàm số f có tất cả bao nhiêu điểm gián đoạn trên khoảng (0;2018)