cho A = 1+2+2^2+...+2^2015 và B=2^2006-1
so sánh A và B
a/Tính: A= \(\sqrt{1+2006^2+\frac{2006^2}{2007^2}}+\frac{2006}{2007}\)
b/Cho A=\(\sqrt{2015^2-1}-\sqrt{2014^2-1}\)và B=\(\frac{2.2014}{\sqrt{2015^2-1}+\sqrt{2014^2-1}}\)
So sánh A vs B
cho a=1+2+2mũ2+.....+ 2 mũ 2021 và n= 2mũ2021-1
so sánh a và b
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}=2^{2022}-1>2^{2021}-1=N\)
\(a=1+2+2^2+...+2^{2021}\\ \Rightarrow2a=2+2^2+2^3+...+2^{2022}\\ \Rightarrow2a-a=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow a=2^{2022}-1>2^{2021}-1=n\)
a=1+2+2^2+2^3+....+2^2021 và b=2^2022-1
so sánh a vs b
giúp mk vs
\(a=1+2+2^2+...+2^{2021}\)
\(\Rightarrow2a=2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2a-a=2+2^2+2^3+...+2^{2022}-1-2-2^2-...-2^{2021}\)
\(\Rightarrow a=2^{2022}-1\)
\(\Rightarrow a=2^{2022}-1=b\)
\(a=1+2+2^2+2^3+...+2^{2021}\)
\(2a=2+2^2+2^3+2^4...+2^{2021}+2^{2022}\)
\(2a-a=\)\(\left(2+2^2+2^3+2^4...+2^{2021}+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\)
\(a=2^{2022}-1\)
⇒ a=b
a= 5^2 + 5^4 + … + 5^2022 và B= 5^2023 - 1
so sánh A và B
A=1+3^2+3^3+3^4+....+3^2001
B=3^2002-1
so sánh a và b
\(A=1+3+3^2+...+3^{2001}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{2002}\)
\(\Rightarrow3A-A=3+3^2+3^3+...+3^{2002}-1-3^2-3^3-...-3^{2001}\)
\(\Rightarrow2A=3^{2002}-1\)
\(\Rightarrow A=\dfrac{3^{2002}-1}{2}\)
Vì \(\dfrac{3^{2002}-1}{2}< 3^{2002}-1\Rightarrow A< B\)
giải bài toán gúp em em sắp thi hcoj kì ạ
Cho A = 1 + 2 + 22 + … + 22020 và B = 22021 – 1
So sánh A và B.
nhanh nhanh nhanh nhanh nhanh nhanh nhanh nhanh
\(A=1+2+2^2+...+2^{2020}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow2A-A=2+2^2+2^3+...+2^{2021}-1-2-2^2-...-2^{2020}\)
\(\Rightarrow A=2^{2021}-1\)
\(\Rightarrow A=2^{2021}-1=B\)
cho A = 1+2+2^3+2^4+...+2^2014+2^2015 và B=2^2015 hãy so sánh A và B
\(A=1+2+2^2+...+2^{2015}>2^{2015}=B\)
\(\Rightarrow A>B\)
P.s: đề sai đúng ko bạn :v
Cho A =1/1-1/2+1/3-1/4+...+1/2005+1/2006
B=(1/1+1/2+1/2006)-2x(1/2+1/4+...+1/2006)
a)So sánh A và B
b)Chứng minh rằng A=1/1004+1/1005+...1/2006
a,\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(A=\left(1+\frac{1}{3}+...+\frac{1}{2005}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2006}\right)\)
\(=B\left(ĐPCM\right)\)
b, \(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2006}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1003}\right)\)
\(A=\frac{1}{1004}+\frac{1}{1005}+...+\frac{1}{2006}\)
ui ghi lộn, chữ đpcm chuyển xuống dòng cuối cùng nhé :v
So sánh A và B biết A=2^2006+7/2^2004+7 và B=2^2003+1/2^2001+1