Chứng tỏ rằng n2+3n chia hết cho 2 với mọi n\(\in\)N
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
Chứng minh rằng với mọi số nguyên n thì (2 - n) ( n2 - 3n + 1) + n (n2 + 12 )+ 8 chia hết cho 5
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
chứng tỏ rằng với mọi số tự nhiên n thì n^2+3+3n ko chia hết cho 9
Chứng tỏ rằng với mọi n là số tự nhiên :
a, 3n^2 + n chia hết cho 2
b, 4n^2 + 12n + 10 không chia hết cho 8
AI LÀM ĐC MÌNH K 3 CÁI LUN !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Chứng tỏ rằng: với mọi số tự nhiên n thì :
n^2 +3n +5 không chia hết cho 121
Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải
Chứng minh bằng phương pháp phản chứng:
Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì:
A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
Với n = k + 1 thì
A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)
⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121
⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121
⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121
⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121
⇒ 2k + 4 ⋮ 121
⇒ 2.(k + 2) ⋮ 121
⇒ k + 2 ⋮ 121 (1)
Mà ta có: k2 + 3k + 5 ⋮ 121
⇒ k(k + 2) + (k + 2) + 3 ⋮ 121
⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)
Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)
Vậy điều giả sử là sai hay
A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)
Cho Q = 3 n ( n 2 + 2 ) - 2 ( n 3 - n 2 ) - 2 n 2 - 7 n . Chứng minh Q luôn chia hết cho 6 với mọi số nguyên n.
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
Chứng minh rằng với mọi số tự nhiên n ,ta có:
(n + 3)2 - n2 chia hết cho 3
(n - 5)2 - n2 chia hết cho 5 và không chia hết cho 2
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
1.Tìm n \(\in\) N, biết:
a) 3n-1 chia hết cho 3-2n
b) 3n+1 chia hết cho 11-2n
2. a) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 2
b) Chứng tỏ rằng tích 3 số tự nhiên liên tiếp chia hết cho 6
c) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 8
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2