Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thiều Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 22:03

Bài 1: 

a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)

\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

b) Ta có: \(\left(2x-3\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)

\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)

\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 22:09

Bài 2: 

a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)

b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)

c) \(3+3^2+3^3+...+3^{2007}\)

\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2005}\right)⋮13\)

xuan thanh
Xem chi tiết
ILoveMath
8 tháng 1 2022 lúc 20:51

\(2+2^2+2^3+2^4+...+2^{59}+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{59}\right)\\ =3\left(2+2^3+...+2^{59}\right)⋮3\)

nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
Nguyễn Diệu Hồng
Xem chi tiết
Nguyễn Minh Quang
22 tháng 10 2021 lúc 19:37

ta có :

\(A=3+3^2+3^3+..+3^{60}=\left(3+3^2\right)+\left(3^3+3^4\right)+..+\left(3^{59}+3^{60}\right)\)

\(=3.4+3^3.4+..+3^{59}.4\text{ nên A chia hết cho 4}\)

mà : \(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3.13+3^4.13+3^7.13+..+3^{58}.13\text{ nên A chia hết cho 13}\)

Khách vãng lai đã xóa
༺༒༻²ᵏ⁸
22 tháng 10 2021 lúc 19:35

Đặt :

\(A=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{59}.4\)

\(=4\left(3+3^3+...+3^{59}\right)\)

Vì \(4⋮4\)

\(\Rightarrow4\left(3+3^3+...+3^{59}\right)⋮4\)

\(\Rightarrow3+3^2+3^3+...+3^{60}⋮4\)

Khách vãng lai đã xóa
༺༒༻²ᵏ⁸
22 tháng 10 2021 lúc 19:39

Đặt : 

\(B=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=3.13+...+3^{58}.13\)

\(=13\left(3+3^4+...+3^{58}\right)\)

Ta có : \(13⋮13\)

\(\Rightarrow13\left(3+3^4+...+3^{58}\right)⋮13\)

\(\Rightarrow3+3^2+3^3+...+3^{60}⋮13\)

Khách vãng lai đã xóa
Nguyễn Bảo Kiều Vy
Xem chi tiết
Trần Thanh Phương
10 tháng 10 2018 lúc 20:53

\(A=2+2^2+...+2^{59}+2^{60}\)

\(A=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(A=2\cdot3+...+2^{59}\cdot3\)

\(A=3\cdot\left(2+...+2^{59}\right)⋮3\left(đpcm\right)\)

Nguyễn Bảo Kiều Vy
10 tháng 10 2018 lúc 20:57

ĐPCM LÀ GÌ VẬY BẠN?

Edogawa Conan
10 tháng 10 2018 lúc 21:05

Số các số hạng của a là (60-1):1+1=60 số 

ta thấy

a=2+22+23+...+260

a=(2+22)+(23+24)+...+(259+260)

a= 2*(1+2)+23*(1+2)+...259*(1+2)

a=2*3+23*3+...+259*3

a=2*(1+23+...+259)\(⋮\)3

Vậy a\(⋮\)3

k mình nha 

chúc bn hok tốt

^- ^

Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa
nguyễn thị hồ
Xem chi tiết
Nguyễn Minh Quang
16 tháng 8 2021 lúc 11:34

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7

\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.

\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)

mà 91 chia hết cho 13 nên B chia hết cho 13.

\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.

D : để ý rằng \(11^k\) đều có đuôi là 1 

nên D có đuôi là đuôi của \(1+1+..+1=10\)

Vậy D chia hết cho 5

Khách vãng lai đã xóa
Phạm Gia Bảo
14 tháng 8 lúc 10:15

Dễ mà bn tự làm đi

đồ ngốc ahihi
Xem chi tiết
Phan Thị Kim Dung
24 tháng 1 2021 lúc 15:18

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

Khách vãng lai đã xóa
đồ ngốc ahihi
Xem chi tiết