Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 20:39

1: \(=8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\)

Khanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2021 lúc 20:50

1: \(=8+2\sqrt{10}-3\sqrt{10}+\sqrt{10}=8\)

nito
Xem chi tiết
HT.Phong (9A5)
13 tháng 8 2023 lúc 14:45

\(x-180=\left(4\dfrac{20}{21}-5\right):\left(\dfrac{4141}{4242}-1\right):\left(\dfrac{636363}{646464}-1\right)\)

\(\Rightarrow x-180=\left(\dfrac{104}{21}-5\right):-\dfrac{1}{42}:-\dfrac{1}{64}\)

\(\Rightarrow x-180=-\dfrac{1}{21}:-\dfrac{1}{42}:-\dfrac{1}{64}\)

\(\Rightarrow x-180=-\dfrac{1}{21}\cdot-42:-\dfrac{1}{64}\)

\(\Rightarrow x-180=2\cdot-64\)

\(\Rightarrow x-180=-128\)

\(\Rightarrow x=-128+180\)

\(\Rightarrow x=52\)

Ng Ngọc
13 tháng 8 2023 lúc 14:46
manh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2023 lúc 21:44

a: \(\dfrac{6}{2-\sqrt{10}}-\dfrac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\sqrt{49+4\sqrt{10}}\)

\(=\dfrac{6\left(2+\sqrt{10}\right)}{4-10}-\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}+\sqrt{49+2\cdot2\sqrt{10}}\)

\(=\dfrac{6\left(2+\sqrt{10}\right)}{-6}-\sqrt{10}+\sqrt{49+2\cdot\sqrt{40}}\)

\(=-2-\sqrt{10}-\sqrt{10}+\sqrt{49+4\sqrt{10}}\)

\(=-2-2\sqrt{10}+\sqrt{49+4\sqrt{10}}\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >1\end{matrix}\right.\)

\(\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x}\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{x}{\sqrt{x}+1}\)

\(=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{x}{\sqrt{x}+1}\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{x}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\cdot\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}\cdot\left(\sqrt{x}+1\right)}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)\)

 

Lã Minh Hoàng
Xem chi tiết
ILoveMath
10 tháng 12 2021 lúc 21:21

ĐKXĐ:\(x\ne\pm3\)

\(\dfrac{x}{x^2-9}+\dfrac{2}{x^2+6x+9}=0\\ \Rightarrow\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)^2}+\dfrac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)^2}=0\\ \Rightarrow\dfrac{x^2+3x+2x-6}{\left(x-3\right)\left(x+3\right)^2}=0\\ \Rightarrow x^2+5x-6=0\\ \Rightarrow\left(x-1\right)\left(x+6\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)

 

ĐỖ NV1
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2023 lúc 13:50

\(=\dfrac{x+5\sqrt{x}+10\sqrt{x}-5\sqrt{x}+25}{x-25}\)

\(=\dfrac{\left(\sqrt{x}+5\right)^2}{x-25}=\dfrac{\sqrt{x}+5}{\sqrt{x}-5}\)

DinhVien
Xem chi tiết
Vy Pham
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 17:52

\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)+2\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\\ =\dfrac{x\sqrt{x}+2x+2x-50+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\\ =\dfrac{x\sqrt{x}-5\sqrt{x}+4x}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}\left(x+4\sqrt{x}-5\right)}{2\sqrt{x}\left(\sqrt{x}+5\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-1}{2}\)

Lấp La Lấp Lánh
16 tháng 9 2021 lúc 17:53

\(\dfrac{x+2\sqrt{x}}{2\sqrt{x}+10}+\dfrac{\sqrt{x}-5}{\sqrt{x}}+\dfrac{50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\left(đk:x>0\right)\)

\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)+2\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}\)

\(=\dfrac{x\sqrt{x}+2x+2x-50+50-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{x\sqrt{x}+4x-5\sqrt{x}}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{2\sqrt{x}\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-1}{2}\)

Diệu Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 11:01

a) Ta có: \(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)

\(=\dfrac{6\left(\sqrt{5}-1\right)}{4}+\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{4}}-2\sqrt{5}\)

\(=\dfrac{3}{2}\left(\sqrt{5}-1\right)+\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-2\sqrt{5}\)

\(=\dfrac{3}{2}\sqrt{5}-\dfrac{3}{2}-2\sqrt{5}+\dfrac{\sqrt{5}+1}{2}\)

\(=-\dfrac{1}{2}\sqrt{5}-\dfrac{3}{2}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\)

=-1

 

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 11:04

Bài 1: 

a) Thay \(x=\dfrac{1}{4}\)vào B, ta được:

\(B=1:\left(\dfrac{1}{4}\cdot\dfrac{1}{2}+27\right)=1:\left(27+\dfrac{1}{8}\right)=\dfrac{8}{217}\)

b) Ta có: \(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-6-x+2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

c) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow3-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 3\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne4\end{matrix}\right.\)

manh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2023 lúc 19:33

a: ĐKXĐ: x>0

\(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

b: ĐKXĐ: x>=0; x<>16

\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x}-4}\right):\dfrac{x+16}{\sqrt{x}+2}\)

\(=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\cdot\dfrac{\sqrt{x}+2}{x+16}\)

\(=\dfrac{x+16}{x+16}\cdot\dfrac{\sqrt{x}+2}{x-16}=\dfrac{\sqrt{x}+2}{x-16}\)

c: ĐKXĐ: x>=0; x<>25

\(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)

\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)

d: \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{-3}{\sqrt{x}-3}\)