Cho C = 1/3 +(1/3)^2b + (1/3)^2 + (1/3)^3 + ... (1/3)^99
CMR C < 1/2
Cho tổng A=1+2+2^2+2^3+...+2^99
CMR: A không chia hết cho 7
\(A=1+2+2^2+2^3+...+2^{99}\)
\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}\right)+2^{99}\)
\(=7+2^3\left(1+2+2^2\right)+...+2^{96}\left(1+2+2^2\right)+2^{99}\)
\(=7+2^3.7+...+2^{96}.7+2^{99}\)
\(=7\left(1+2^3+...+2^{96}\right)+2^{99}\)
Vì \(7⋮7=>7\left(1+2^3+...+2^{96}\right)⋮7\) mà \(2^{99}⋮̸7\)
\(=>A⋮̸7\)
CHO a,b,c > 0 thõa mãn abc=1. Chứng minh rằng \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2b^2+3}\le\frac{1}{2}\)
cho a,b,c > 0, abc=1. C/m 1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3) <= 1/2
+) chứng minh 1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1=1
<=> abc/ab+b+abc + abc/bc+c+abc + 1/ac+a+1
<=> ac/ac+a+1 + ab/b+1+ab + 1/ac+a+1
<=> ac+a+1/ac+a+1
<=> 1
+) xét: a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2 >= 2ab+2b+2<=1/2(ab+b+1) (1)
chứng minh tương tự:1/ b^2+2c^2+3 <= 1/2(bc+c+1) (2)
1/ c^2+2a^2+3 <= 1/2(ac+a+1) (3)
cộng các vế của (1),(2),(3) ta duoc: 1/(a^2+2b^2+3) + 1/(b^2+2c^2+3) + 1/(c62+2a^2+3) <= 1/2.(1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1)=1/2 (đpcm)
mình làm rồi, bạn vào đây tham khảo nha: http://olm.vn/hoi-dap/question/559729.html
CHO a,b,c > 0 thõa mãn abc=1. Chứng minh rằng \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2b^2+3}\le\frac{1}{2}\)
Đề đúng là \(T=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Ta có:
\(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\) (chứng minh cái này chắc dễ)
\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)
Tương tự ta có:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right)\)và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)
Cộng theo vế của (1);(2) và (3) ta có:
\(T\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)
\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)
\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}\)(đpcm)
Dấu = khi \(a=b=c=1\)
Cho a >b . Chứng minh : a)4a – 3 > 4b – 3; b) 1 – 2a < 1- 2b ; c) 5( a+ 3) - 4 > 5( b + 3) – 4; d)5 – 2a < 5 – 2b e) – 2 (1 – a) – 6 > -2 (1 – b ) – 6
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
Cho a,b,c>0 thoả mãn:abc=1
Chứng minh 1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3)<=1/2
Áp dụng bất đẳng thức \(AM-GM\) cho từng cặp số không âm, ta có:
\(a^2+b^2\ge2ab\) \(\left(1\right)\)
\(b^2+1\ge2b\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\left(2\right)\) vế theo vế, ta được:
\(a^2+2b^2+1\ge2ab+2b\)
\(\Rightarrow\) \(a^2+2b^2+3\ge2ab+2b+2\)
Vì hai vế của bất đẳng thức trên cùng dấu (do \(a,b,c>0\)) nên ta nghịch đảo hai vế và đổi chiều bất đẳng thức:
\(\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}\) \(\left(1\right)\)
Hoàn toàn tương tự với vòng hoán vị \(b\) \(\rightarrow\) \(c\) \(\rightarrow\) \(a\) \(\rightarrow\) \(b\), ta có:
\(\frac{1}{b^2+2c^2+3}\ge\frac{1}{2bc+2c+2}\) \(\left(2\right)\) và \(\frac{1}{c^2+2a^2+3}\ge\frac{1}{2ca+2a+2}\) \(\left(3\right)\)
Cộng từng vế \(\left(1\right);\) \(\left(2\right)\) và \(\left(3\right)\), ta được:
\(VT\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ca+2a+2}=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\) \(\left(\text{*}\right)\)
Mặt khác, xét từng phân thức \(\frac{1}{ab+b+1};\frac{1}{bc+c+1};\frac{1}{ca+a+1}\) kết hợp với giả thiết đã cho, nghĩa là \(abc=1,\) ta có:
\(\frac{1}{ab+b+1};\) \(\frac{1}{bc+c+1}=\frac{abc}{bc+c+abc}=\frac{ab}{ab+b+1}\) và \(\frac{1}{ca+a+1}=\frac{abc}{ca+a+abc}=\frac{bc}{bc+c+1}=\frac{bc}{bc+c+abc}=\frac{b}{ab+b+1}\)
Do đó, \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}=1\) \(\left(\text{**}\right)\)
Từ \(\left(\text{*}\right)\) và \(\left(\text{**}\right)\) suy ra \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c\)
Cho 3 số dương a,b,c thỏa mãn abc = 1. Tìm GTLN của biểu thức
\(P=\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\)
\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
Tương tự ...
\(\Rightarrow P\le\dfrac{1}{2\left(ab+b+1\right)}+\dfrac{1}{2\left(bc+c+1\right)}+\dfrac{1}{2\left(ca+a+1\right)}\)
\(=\dfrac{1}{2}\left(\dfrac{c}{abc+bc+c}+\dfrac{1}{bc+c+1}+\dfrac{bc}{ca.bc+a.bc+bc}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{c}{1+bc+c}+\dfrac{1}{bc+c+1}+\dfrac{bc}{c+1+bc}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{c+1+bc}{1+bc+c}\right)=\dfrac{1}{2}\)
\(P_{max}=\dfrac{1}{2}\) khi \(a=b=c=1\)
Cho a,b,c là các số dương.
a) CMR: \(a^3+b^3\ge a^2b+ab^2\)
b) Giả sử abc=1. Tìm GTLN của biểu thức:
\(P=\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\)
a) Điều phải chứng minh tương đương với:
\(a^3+b^3-a^2b-b^2a\ge0\\ \Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\left(luon.dung\right)\)
Dấu = xảy ra khi a=b
b) Áp dụng bất đẳng thức ở phần a ta có:
\(\dfrac{1}{a^3+b^3+1}\le\dfrac{1}{a^2b+b^2a+abc}=\dfrac{1}{ab\left(a+b+c\right)}\\ =\dfrac{abc}{ab\left(a+b+c\right)}=\dfrac{c}{a+b+c}\left(do.abc=1\right)\)
Tương tự : \(\dfrac{1}{b^3+c^3+1}\le\dfrac{a}{a+b+c};\dfrac{1}{c^3+a^3+1}\le\dfrac{b}{a+b+c}\)
\(\Rightarrow P\le\dfrac{a+b+c}{a+b+c}=1\)
Dấu = xảy ra <=> a=b=c=1
Cho ba số thực dương a,b,c thỏa mãn abc = 1
Chứng minh rằng : \(\dfrac{1}{a^2+2b^2+3}+\dfrac{1}{b^2+2c^2+3}+\dfrac{1}{c^2+2a^2+3}\) ≤ \(\dfrac{1}{2}\)
\(Áp\ dụng\ BĐT\ AM - GM,\ ta\ có: \\\sum\dfrac{1}{a^2+2b^2+3}=\sum\dfrac{1}{(a^2+b^2)+(b^2+1)+2}\le\sum\dfrac{1}{2ab+2b+2} \\=\dfrac{1}{2}\sum\dfrac{1}{ab+b+1}=\dfrac{1}{2}.1=\dfrac{1}{2} \\Đẳng\ thức\ xảy\ ra\ khi\ a=b=c=1.\)