Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngô thị gia linh
Xem chi tiết
Ngô Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2023 lúc 14:31

a: Xét ΔABN và ΔACM có

AB=AC

\(\widehat{BAN}\) chung

AN=AM

Do đó: ΔABN=ΔACM

b: Ta có: AM+MB=AB

AN+NC=AC

mà AM=AN và AB=AC

nên MB=NC

Xét ΔMBC và ΔNCB có

MB=NC

\(\widehat{MBC}=\widehat{NCB}\)

BC chung

Do đó: ΔMBC=ΔNCB

=>\(\widehat{BMC}=\widehat{CNB}\) và \(\widehat{MCB}=\widehat{NBC}\)

Ta có: \(\widehat{MCB}=\widehat{NBC}\)

=>\(\widehat{OCB}=\widehat{OBC}\)

=>ΔOBC cân tại O

=>OB=OC

c: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Ta có: FB=FC
=>F nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,O,F thẳng hàng

Lê Thanh Ngọc
Xem chi tiết
Giọt Mưa
Xem chi tiết
TRịnh Thị HƯờng
30 tháng 12 2016 lúc 17:21

undefined

TRịnh Thị HƯờng
30 tháng 12 2016 lúc 17:34

hình vẽ đấy nhé

GIAI

a ) xét tam giác AMB và tam giác CMN có

AM = MC ( M là trung điểm của AC )

góc AMB = goc CMN ( đối đỉnh )

MB = MN ( M là trung điểm của BN )

=> tam giác AMB = tam giác CMN ( c.g.c)

=> AB = CN ( 2 cạnh tương ứng )

=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )

=> CN vuông góc với AC (dpcm )

b ) chúng minh tương tự

=> tam giác ANM = tam giác CBM ( c.g.c )

=> AN = BC ( 2 cạnh tương ứng )

=> góc ANM = góc CBM ( 2 góc tương ứng )

mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC

=> AN song song BC ( dpcm)

Trần Thị Đào
Xem chi tiết
Lê Dung
28 tháng 9 2017 lúc 15:12

Hình bạn tự vẽ nhé

Ta có AB = AC

=> \(\Delta\)ABC cân ở A

mà M và N lần lượt là trung điểm của AB và AC

=> AN = AM = CN = BM luôn

Xét \(\Delta NAB\)\(\Delta MAC\) có:

\(AM=AN\)

\(\widehat{A}\) chung

\(AB=AC\)

=> 2 tam giác này bằng nhau \(\left(c.g.c\right)\)

=> \(BN=CM\)\(\widehat{BNC}=\widehat{CMB}\)

làm gộp lại nhé bn

Đặng Tấn Phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 8 2023 lúc 16:49

a: Xét ΔABN và ΔACM có

AB=AC

góc BAN chung

AN=AM

=>ΔABN=ΔACM

b: ΔABN=ΔACM

=>BN=CM

AM+MB=AB

AN+NC=AC
mà AM=AN và AB=AC

nên MB=NC

Xét ΔMBC và ΔNCB có

MB=NC

BC chung

MC=NB

=>ΔMBC=ΔNCB

=>góc BMC=góc BNC và góc OBC=góc OCB

Xét ΔOCB có góc OBC=góc OCB

nên ΔOBC cân tại O

=>OB=OC

Gaming DemonYT
Xem chi tiết
KO tên
1 tháng 3 2021 lúc 20:07

a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN

b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi

Nguyễn Hữu An
Xem chi tiết
HÀ nhi HAongf
Xem chi tiết