Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ẩn danh

Những câu hỏi liên quan
Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 1 2023 lúc 19:47

a

Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m}< >\dfrac{m}{2}\)

=>m^2<>2m-2

=>m^2-2m+2<>0(luôn đúng)

Để hệ có vô sô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}=\dfrac{m+1}{2}\)

=>2m=2m+2 và 2m-2=m^2+m

=>m^2+m-2m+2=0 và 0m=2(loại)

Để hệ vô nghiệm thì \(\dfrac{m}{2}=\dfrac{m-1}{m}< >\dfrac{m+1}{2}\)

=>m^2=2m-2 và 2m<>2m+2

=>0m<>2 và m^2-2m+2=0(loại)

b: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m+2}< >\dfrac{m-2}{m+1}\)

=>m^2+m<>m^2-4

=>m<>-4

Để hệ có vô số nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}=\dfrac{5}{2}\)

=>m^2+m=m^2-4 và 2m=5m+10

=>m=-4 và m=-10/3(loại)

Để hệ vô nghiệm thì \(\dfrac{m}{m+2}=\dfrac{m-2}{m+1}< >\dfrac{5}{2}\)

=>m=-4 và m<>-10/3(nhận)

c: Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{m+2}< >-\dfrac{2}{1}=-2\)

=>-2m-4<>m-1

=>-3m<>3

=>m<>-1

Để hệ vô nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)

=>2m+4=-m+1 và 2-2m<>-3m+1

=>3m=-3 và m<>-1

=>m=-1 và m<>-1(loại)

Để hệ có vô số nghiệm thì \(\dfrac{m-1}{m+2}=\dfrac{2}{-1}< >\dfrac{3m-1}{1-m}\)

=>m=-1

Ngọc Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 0:36

a: \(\Leftrightarrow\left\{{}\begin{matrix}mx+\left(m+1\right)y=m+1\\my=2-2x\end{matrix}\right.\)

Nếu m=0 thì hệ sẽ là y=0+1=1 và 2-2x=0

=>y=1 và x=1

Nếu m<>0 thì \(\left\{{}\begin{matrix}y=\dfrac{-2x+2}{m}\\x\cdot m+\left(m+1\right)\cdot\dfrac{-2x+2}{m}=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot m+x\cdot\dfrac{-2\left(m+1\right)}{m}+\dfrac{2m+2}{m}=m+1\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\left(m+\dfrac{-2m-2}{m}\right)=m+1-\dfrac{2m+2}{m}=\dfrac{m^2+m-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{m^2-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)

Nếu m^2-2m-2=0 thì hệ vô nghiệm

Nếu m^2-2m-2<>0 thì hệ sẽ có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m}\cdot\dfrac{m^2-m-2}{m^2-2m-2}+\dfrac{2}{m}=\dfrac{-2m^2+2m+4+2m^2-4m-4}{m\left(m^2-2m-2\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m^2-2m-2}\end{matrix}\right.\)

c: =>(m-1)x+2y=3m-1 và (2m+2)x-2y=2-2m

=>(3m+1)x=m+1 và y=(m+2)x+m-1

Nếu m=-1/3 thì hệ vô nghiệm

Nếu m<>-1/3 thì hệ sẽ có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{m+1}{3m+1}\\y=\dfrac{m^2+3m+2}{3m+1}+m-1=\dfrac{m^2+3m+2+3m^2-3m+m-1}{3m+1}=\dfrac{4m^2+m+1}{3m+1}\end{matrix}\right.\)

laladada
Xem chi tiết
tranthuylinh
Xem chi tiết
Lê Thị Thục Hiền
27 tháng 5 2021 lúc 10:47

a) Để hàm đồng biến <=> a>0 <=> m-1>0 <=> m>1

Để hàm nghịch biến <=> a<0 <=> m<1

b)Có phải đề như này: \(y=-m^2x+1\)

Nhận xét: \(-m^2\le0\forall m\)

=> Hàm luôn nghịch biến với mọi \(m\ne0\) 

c)Để hàm nghịch biến <=> a<0 <=> 1-3m<0\(\Leftrightarrow m>\dfrac{1}{3}\)

Để hàm đồng biền <=> a>0 \(\Leftrightarrow m< \dfrac{1}{3}\)

trương khoa
27 tháng 5 2021 lúc 10:47

a/ Hàm số y=(m-1)x+2 đồng biến khi và chỉ khi m-1>0

⇔m>1

nghịch biến khi và chỉ khi m-1<0

⇔m<1

b/Hàm số y=-2mx+1 đồng biến khi và chỉ khi -2m>0

⇔m<0

nghịch biến khi và chỉ khi -2m<0

⇔m>0

c/Hàm số y=(1-3m)x+2m đồng biến khi và chỉ khi 1-3m>0

⇔-3m>-1

⇔m<\(\dfrac{1}{3}\)

nghịch biến khi và chỉ khi 1-3m<0

⇔-3m<-1

⇔m>\(\dfrac{1}{3}\)

phamthiminhanh
Xem chi tiết
nguyen thi be
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 5 2021 lúc 12:18

a.

\(y'=x^2+2\left(m^2-1\right)x+2m-3\)

\(y''=2x+2\left(m^2-1\right)\)

Hàm đạt cực đại tại \(x=2\) khi: \(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4+4\left(m^2-1\right)+2m-3=0\\4+2\left(m^2-1\right)< 0\end{matrix}\right.\)

Do \(2m^2+2>0\) ;\(\forall m\) nên ko tồn tại m thỏa mãn yêu cầu đề bài

b.

\(y'=x^2+2mx+3\)

\(y''=2x+2m\)

Hàm đạt cực đại tại \(x=-3\) khi: \(\left\{{}\begin{matrix}9-6m+3=0\\-6+2m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=2\\m< 3\end{matrix}\right.\)

\(\Rightarrow m=2\)

Ngọc Ngọc
Xem chi tiết
Phạm Đức Luân
Xem chi tiết
Cẩm Tú
Xem chi tiết
Hải Yến
Xem chi tiết
Khang Diệp Lục
3 tháng 2 2021 lúc 20:55

Thay m=2 vào HPT ta có: 

\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiemj (x;y) = (3;-11)