1,Cho tam giác ABC cân tại A.Vẽ các đường cao BE,CF
C/M:a,AE=AF
b,BCEF là hình thang cân
Cho tam giác ABC cân tại A.Vẽ đường phân giác BE và CF
A,Chứng minh tam giác ABE=tam giác ACF
B,Tứ giác BCEF là hình thang cân
C,Chứng minh EF=EC
Cho tam giác ABC cân tại A.Vẽ đường phân giác BE và CF
A,Chứng minh tam giác ABE=tam giác ACF
B,Tứ giác BCEF là hình thang cân
C,Chứng minh EF=EC
Tớ nói với cậu chỗ tin nhắn rồi .... nếu không hiểu thì báo tớ,,,,, tớ ns tiếp cho
Cho tam giác ABC cân tại A (góc A<40 độ), BE, CF là 2 đường cao, BM, CN là 2 phân giác của tam giác ABC. Chứng minh BCEF và EMNF là các hình thang cân
Góc BEC=góc BFC=90 độ
=>BCEF LÀ TỨ GIÁC NỘI TIẾP
=>Góc AFE=gócC (1)
Tam giác BNC đồng dạng với tam giác BMC(g.c.g)
=>Góc BNC=góc BMC
=>BCMN là tứ giác nội tiếp
=>Góc ANM=góc AMN=góc C (2)
Từ 1 và 2
Có EF song song với MN và góc ANM=góc AMN
=>EMNF là hình thang cân
Cho tam giác ABC cân tại A (A <40°) , BE, CF là 2 đường cao. BM, CN là 2 đường phân giac của ABC. CHỨNG MINH BCEF, EMNF LÀ CÁC HÌNH THANG CÂN
Cho tam giác ABC cân tại A (góc A bé hơn 90 độ) đường cao BE và CF
(E thuộc AC, F thuộc AB)
a) CM tam giác AEB = tam giác AFC
b) CM tứ giác BCEF là hình thang
Bạn vẽ hình ra nhé! chúc bạn thi tốt!!!
a) xét tam giác AEB và tam giac ÀFC có :góc E= góc F=90 độ
góc A chung
ab=ac( tam giác ABC cân tại A)
suy ra tam giác tg AEB= tg AFC( cạnh huyền-góc nhọn)
b)ta có tg AEB=tg AFC ( cmt)
suy ra AE=AF suy ra tam giác AFE cân tại A suy ra góc ÀFE= góc AEF=(180- góc A)/2 (1)
mà tg ABC cân tại A suy ra góc B = góc C= (180-góc A)/2 (2)
từ (1) và (2) suy ra góc AFE= góc B suy ra FE // BC( hai góc đồng vị)
suy ra tứ giác BCEF là hình thang
Tam giác ABC cân tại A.Vẽ về phía ngoài của tam giác ABC các tam giác đều ABD, ACE.
a)C/mBE=CD
b)Kẻ đường phân giác AF của tam giác ABC. C/m BE, CD, AF đồng quy
a) ΔABC cân ⇒ AB = AC; góc ABC = góc ACB
ΔABD đều ⇒ AD = BA = BD; góc ABD = góc BDA = góc DAB = 60 độ
ΔACE đều ⇒ AC = CE = AE; góc ACE = góc CEA = góc EAC = 60 độ
Xét ΔACD và ΔAEB có:
AC = AE (cmt)
góc DAC = góc EAB (=60 độ + góc BAC)
DA = BA (cmt)
AC = AB
⇒ ΔACD = ΔAEB (c.g.c)
⇒ CD = EB (2 cạnh tương ứng)
Cho tam giác ABC cân tại A ( góc A < 40 độ) có BM,CN là hai đường phân giác của tam giác ABC.
a) Chứng minh BCMN là hình thang cân
b) BE,CF là hai đường cao của tam giác ABC. Chứng minh EMNF là hình thang cân.
Bài 1: Cho hình thang cân ABCD có đáy AB, CD; AD = AB và ^D = 60 độ.
a) Tính các góc của hình thang ABCD.
b) Chứng minh DB là phân giác của ^B ?
c) Tam giác DBC là tam giác gì ? Vì sao ?
Bài 2: Cho tam giác ABC cân tại A, đường phân giác BE và CF.
a) Chứng minh tam giác AEF cân tại A ?
b) Chứng minh tứ giác BCEF là hình thang cân ?
c) Chứng minh CE = EF = FB ?
Bài 3: Cho hình thang ABCD. Qua B vẽ đường thẳng song song với CD cắt AD ở E. Biết chu vi tam giác ABE = 12 cm.
a) Chứng minh BC = ED, BE = CD ?
b) Tính chu vi hình thang ABCD.
=>Mọi người ơi giúp mình nhé mình đang cần gấp... Mình cảm ơn mọi người nhiều nha !!!
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Cho tam giác ABC cân tại A (góc A < 40 độ) có BM và CN là hai đường phân giác của tam giác ABC
a) Chminh BCMN là hình thang cân
b) BE,CF là hai đường cao của tam giác ABC,Ch.minh EMNF là hình thang cân