Tính
\(1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+...+2015\cdot2016\cdot2017\)
Tính
\(A=1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+...+2014\cdot2015\cdot2016\)
\(A=1.2.3+2.3.4+3.4.5+....+2014.2015.2016\)
\(4A=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+....+2014.2015.2016.\left(2017-2013\right)\)\(4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+2014.2015.2016.2017-2013.2014.2015.2016\)\(4A=2014.2015.2016.2017\)
\(A=\dfrac{2014.2015.2016.2017}{4}=4215446423280\)
Cho \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{2014\cdot2015\cdot2016}\).
Chứng minh \(A\le\dfrac{1}{4}\).
A=\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{2014\cdot2015\cdot2016}=\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2014\cdot2015}-\dfrac{1}{2015\cdot2016}\right)=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2015}\cdot\dfrac{1}{2016}\right)=\dfrac{1}{4}-\dfrac{1}{2\cdot2015\cdot2016}< \dfrac{1}{4}\)
Vậy A<\(\dfrac{1}{4}\)
---bé hơn hoặc bằng tức là chỉ cần xảy ra 1 khả năng cũng thõa mãn nhé---
Cho \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{2014\cdot2015\cdot2016}\).
So sánh A với \(\dfrac{1}{4}\).
Tính tổng A=\(\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+\frac{1}{3\cdot4\cdot5\cdot6}+...+\frac{1}{27\cdot28\cdot29\cdot30}\)
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
\(A=\frac{1}{4.6}+\frac{1}{10.12}+\frac{1}{18.20}+...+\frac{1}{810.812}\)
.......
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.....+\frac{1}{27.28.29.30}\)
\(3A=3.\left(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+......+\frac{1}{27.28.29.30}\right)\)
\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+..........+\frac{3}{27.28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+........+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{6}-\frac{1}{24360}\)
\(3A=\frac{1353}{8120}\)
\(A=\frac{1353}{8120}:3\)
\(A=\frac{451}{8120}\)
Ta có:3A=\(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+.............+\frac{3}{27.28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...........+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
\(3A=\frac{1353}{8120}\Rightarrow A=\frac{451}{8120}\)
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{2021\cdot2022\cdot2023}\)
\(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{2021\cdot2022\cdot2023}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{2021\cdot2022\cdot2023}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2021\cdot2022}-\dfrac{1}{2022\cdot2023}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4090506}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2045252}{4090506}=\dfrac{1022626}{4090506}=\dfrac{511313}{2045253}\)
`1/(1.2.3) + 1/(2.3.4) + ... + 1/(2021 . 2022 .2023)`
`=> 2/(1.2.3) + 2/(2.3.4) + ... + 2/(2021 . 2022. 2023)`
`= 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + ... + 1/(2021.2022) - 1/(2022 . 2023)`
`= 1/2 - 1/4090506`
`=4090506/8181012 - 2/8181012`
`= 4090504/8181012`
Tính\(\frac{-3}{1\cdot2\cdot3}+\frac{-3}{2\cdot3\cdot4}+\frac{-3}{3\cdot4\cdot5}+...+\frac{-3}{18\cdot19\cdot20}\)
Ta có: \(\frac{-3}{1.2.3}+\frac{-3}{2.3.4}+\frac{-3}{3.4.5}+...+\frac{-3}{18.19.20}\)
\(=\frac{-3}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{18.19.20}\right)\)
\(=\frac{-3}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{-3}{2}\left(\frac{1}{2}-\frac{1}{19.20}\right)=\frac{-3}{2}.\frac{189}{380}=\frac{-567}{760}\)
Tính Tổng :
\(A=\frac{1}{1\cdot2\cdot3\cdot4}+\frac{1}{2\cdot3\cdot4\cdot5}+\frac{1}{3\cdot4\cdot5\cdot6}+...+\frac{1}{47\cdot48\cdot49\cdot50}\) mọi người giúp em với ạ
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+....+\frac{1}{47.48.49.50}\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{47.48.49}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}.\frac{6533}{39200}=\frac{6533}{117600}\)
Tính \(A=\frac{1}{1\cdot2\cdot3\cdot4\cdot5}+\frac{1}{2\cdot3\cdot4\cdot5\cdot6}+...+\frac{1}{26\cdot27\cdot28\cdot29\cdot30}\)
Rút gọn:
a,\(A=\frac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\)
b,\(B=\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2014\cdot2016}\right)\)