Cho A =1+3+3^2+.............3200.
a) CChứng minh A chia hết cho 3
b)Tính A
cho A = 1+2+2 mũ 2 + 2 mũ 3 + ...+2 mũa 99
a> tính a
b> chứng minh a chia hết cho 3
c> chứng minh a chia hết cho 15
\(a,2A=2+2^2+2^3+...+2^{100}\\ \Rightarrow2A-A=2+2^2+...+2^{100}-1-2-...-2^{99}\\ \Rightarrow A=2^{100}-1\\ b,A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\\ A=\left(1+2\right)\left(1+2^2+...+2^{98}\right)=3\left(1+2^2+...+2^{98}\right)⋮3\\ c,A=\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(1+...+2^{96}\right)=15\left(1+...+2^{96}\right)⋮15\)
Cho a = 1+2+2^2+2^3 + ... +2^41
a, Tính A
b, Chứng minh rằng A chia hết cho 3 , A chia hết cho 7
c , Tìm số dư của A khi chia cho 5
a) \(A=1+2+2^2+...+2^{41}\)
\(2A=2+2^2+...+2^{42}\)
\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)
\(A=2^{42}-1\)
b) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)
\(A=3+2^2\cdot3+...+2^{40}\cdot3\)
\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)
Vậy A ⋮ 3
__________
\(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)
\(A=7+...+2^{39}\cdot7\)
\(A=7\cdot\left(1+..+2^{39}\right)\)
Vậy: A ⋮ 7
c) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)
\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)
\(A=5\cdot\left(1+2+...+2^{39}\right)\)
A ⋮ 5 nên số dư của A chia cho 5 là 0
A = 1 + 2 + 22 + 23 + ... + 241
2A = 2 + 22 + 23 + 24 +...+ 242
a, 2A - A = 2 + 22 + 23 + 24+...+ 242 - (1 + 2 + 22 + 23 + ... + 241)
A = 2 + 22 + 23 + 24 +...+242 - 1 - 2 - 22 - 23 -...- 241
A = 242 - 1
b, A = 1 + 2 + 22 + 23 + ... + 241
A = 20 + 21 + 22 + 23 + ... + 241
Xét dãy số: 0; 1; 2;...; 41 dãy số này có: (41- 0):1 + 1 = 42 (số hạng)
Vậy A có 42 hạng tử. Nhóm hai số hạng liên tiếp của A với nhau thành một nhóm, vì 42: 2 = 21 nên
A = (20 + 21) + (22 + 23) +...+ (240 + 241)
A = 3 + 22.(1 + 2) +...+ 240.(1 + 2)
A = 3 + 22. 3 +...+ 240. 3
A = 3.(1 + 22 + ... + 240)
Vì 3 ⋮ 3 nên A = 3.(1 + 22 + ... + 240) ⋮ 3 (1)
Vì A có 42 hạng tử mà 42 : 3 = 14 vậy nhóm ba hạng tử liên tiếp của A thành 1 nhóm ta được:
A = (1 + 2 + 22) + (23 + 24 + 25) +...+ (239 + 240 + 241)
A = 7 + 23.(1 + 2 + 22) +...+ 239.(1 + 2 + 22)
A = 7 + 23.7 +...+ 239.7
A = 7.(1 + 23 +...+ 239)
Vì 7 ⋮ 7 nên A = 7.(1 + 23+...+ 239)⋮ 7 (2)
Kết hợp (1) và (2) ta có: A ⋮ 3; 7(đpcm)
c, A = 242 - 1
A = (24)10.22 - 1
A = \(\overline{...6}\)10.4 - 1
A = \(\overline{..4}\) - 1
A = \(\overline{...3}\)
Vậy A : 5 dư 3
Cho A=3^1+3^2+3^3.....+3^2020
a)Tính tổng a
b)Chứng minh A chia hết cho 4 ,A chia hết cho 40
a) Ta có: \(A=3+3^2+3^3+...+3^{2020}\)
\(\Leftrightarrow\frac{A}{3}=1+3+3^2+...+3^{2019}\)
\(\Leftrightarrow A-\frac{A}{3}=\left(3+3^2+...+3^{2020}\right)-\left(1+3+...+3^{2019}\right)\)
\(\Leftrightarrow\frac{2}{3}A=3^{2020}-1\)
\(\Leftrightarrow A=\frac{3^{2021}-3}{2}\)
b) CM chia hết cho 4:
\(A=3+3^2+3^3+3^4+...+3^{2019}+3^{2020}\)
\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)
\(A=3\cdot4+3^3\cdot4+...+3^{2019}\cdot4\)
\(A=\left(3+3^3+...+3^{2019}\right)\cdot4\) chia hết cho 4
CM chia hết cho 40:
\(A=3+3^2+3^3+3^4+...+3^{2017}+3^{2018}+3^{2019}+3^{2020}\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{2017}\left(1+3+3^2+3^3\right)\)
\(A=3\cdot40+...+3^{2017}\cdot40\)
\(A=\left(3+...+3^{2017}\right)\cdot40\) chia hết cho 40
1.tính x biết :
a. x2+2chia hết cho x+2
b. x-1 là ước của x2-2x+3
2.chứng minh rằng :5x+47y là bội của 17
<=>x+6y là bội của 17
3.cho 5a+8b chia hết cho 3.Chứng minh:
a.(-a)+2b chia hết cho 3
b. 16b+a chia hết cho 3
c. 10a+b chia hết cho (-3)
định lý pain thiên đạo hay quá ta!
a; \(x^2\) + 2 ⋮ \(x+2\) (\(x\ne\) -2)
\(x^2\) + 2\(x\) - 2\(x\) - 4 - 2 ⋮ \(x+2\)
(\(x^2\) + 2\(x\)) - (2\(x\) + 4) - 2 ⋮ \(x+2\)
\(x\).(\(x+2\)) - 2(\(x+2\)) - 2 ⋮ \(x+2\)
(\(x+2\))(\(x-2\)) - 2 ⋮ \(x+2\)
2 ⋮ \(x+2\)
\(x+2\) \(\in\) Ư(2) = {-2; -1; 1; 2}
\(x\) \(\in\) {-4; -3; -1; 0}
Vậy \(x\) \(\in\) {-4; -3; -1; 0}
1 ) A = 3 + 3^2 + 3^3 +...+ 3^2007 + 3^2008. Chứng minh A chia hết cho 4
2 ) ( a + b ) chia hết cho 2,Chứng minh ( a + 3b ) chia hết cho 2
1)A=3+32+33+...+32008
A=(3+32)+(33+34)+...+(32007+32008)
A=3(1+3)+33(1+3)+...+32007(1+3)
A=3.4+33.4+...+32007.4
A=4(3+....+32007) chia hết cho 4
1/Cho A=120a+36b.Chứng minh A chia hết 12.
2/Cho(2a+7b) chia hết 3.Chứng minh (4a+2b) chia hết cho 3.
3/Cho (a+b) chia hết 2.Chứng Minh (a+3b) chia hết cho2.
1) A = 120a + 36b
=> A = 12.10.a + 12.3.b
=> A = 12.(10a+3b)
Do 12.(10a+3b) \(⋮\)12
nên 120a+36b \(⋮\)12
2) Gọi (2a+7b) là (1)
(4a+2b) là (2)
Xét (1), ta có: 2a+7b = 2.(2a+7b) = 4a + 14b (3)
Lấy (3) - (1), ta có: (4a+14b) - (4a+2b) = 12b \(⋮\)3
Hay 4a+2b chia hết cho 3
3) Gọi (a+b) là (1)
(a+3b) là (2)
Lấy (2) - (1), ta có: (a+3b) - (a+b) = 2b \(⋮\)2
Hay (a+3b) chia hết cho 2
1 ) A = 3 + 3^2 + 3^3 +...+ 3^2007 + 3^2008. Chứng minh A chia hết cho 4
2 ) ( a + b ) chia hết cho 2,Chứng minh ( a + 3b ) chia hết cho 2
1, A=(3+3^2)+(3^3+3^4)+...+(3^2007+3^2008)
A= 3.4+3^3.4+...+3^2007 .4
A= 4(3+3^3+...+3^2008)=>ĐPCM
2, theo đề bài :a+b chia hết cho 2
ta có : a+3b=a+b+2b
vì a+b chia hết cho 2 mà 2b chia hết cho 2=> ĐPCM
Bài 1: Cho A = 2 + 22 + 23 + ..... + 260. Chứng minh rằng:
a, A chia hết cho 3
b, A chia hết cho 7
c, A chia hết cho 15
Bài 2: Cho B= 1 + 3 + 32 + 33 + ... + 311. Chứng minh rằng:
a, B chia hết cho 13
b, B chia hết cho 40
1/a)Ta có: A = 2 + 22 + 23 + ... + 260
= (2 + 22) + (23+24) + ... + (259 + 560)
= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)
= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)
= 2.3 + 23.3 + ... + 259.3
= 3.(2 + 23 + ... + 259) \(⋮\) 3
Vậy A \(⋮\) 3.
b) Tương tự: gộp 3.
c) gộp 4
Bài 1:
a, A = 2 + 22 + 23 + ... + 260
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )
= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )
= 2 . 3 + 23 . 3 + ... + 259 . 3
= 3 . ( 2 + 23 + ... + 259 )
Vậy A chia hết cho 3
b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)
= 2. 7 + 24 . 7 + ... + 258 . 7
= 7 . ( 2 + 24 + ... + 258 )
Vậy A chia hết cho 7
c, Ta có:
A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )
= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )
= 2. 15 + ............ + 257 . 15
= 15 . ( 2 + ...............+ 257 )
Vậy A chia hết cho 15
Bài 1:
a, A có 60 số hạng, chia A thành 30 cặp như sau:
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(A=2.3+2^3.3+...+2^{59}.3\)
\(A=3.\left(2+2^3+...+2^{59}\right)⋮3\left(đpcm\right)\)
b, Chia A thành 20 nhóm, mỗi nhóm có 3 số hạng như sau:
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^3\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{58}.7\)
\(A=7.\left(2+2^4+...+2^{58}\right)⋮7\left(đpcm\right)\)
c, Chia A thành 15 nhóm, mỗi nhóm 4 số hạng như sau:
\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(A=2.15+2^5.15+...+2^{57}.15\)
\(A=15\left(2+2^5+...+2^{57}\right)⋮15\left(đpcm\right)\)
Cho A=1+3+31+32+32+…+399
a. Chứng minh rằng A chia hết cho 4
b. Chứng minh rằng A chia hết cho 41 thì A chia hết cho 164
mình cũng chỉ làm được câu a thôi. hì hì