(a2+b2).(x2+y2)=(ax-by)2+(bx+ay)2
(a+b)3-(a-b)3=2b.(3a2+b2)
ai làm được bài này mình sẽ cho 1 like :)
If |(ax+by)(ay+bx)|≤x2+y2 holds for all real x and y, then prove a2+b2≤2
Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;
∑2a2−bcb2−bc+c2≥3
Bài 8:
Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.
Tìm GTNN của F=a2+b2+x2+y2+bx+ay
Bài 8:
Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.
Tìm GTNN của F=a2+b2+x2+y2+bx+ayF=a2+b2+x2+y2+bx+ay
Lời giải:
Sử dụng giả thiết ax−by=√3ax−by=3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức CauchyCauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9
⇒2√x2+3+x≥3⇒2x2+3+x≥3
Vậy MinT=3MinT=3
Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;
∑2a2−bcb2−bc+c2≥3∑2a2−bcb2−bc+c2≥3
Không mất tính tổng quát, ta có thể giả sử bb là số nằm giữa aa và cc
BĐT đã cho tương đương với
∑2a2+(b−c)2b2−bc+c2≥6∑2a2+(b−c)2b2−bc+c2≥6
Áp dụng BĐT Cauchy-Schwarz, ta có
∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a
∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a
Do đó ta chỉ cần chứng minh
(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)
Ta có
b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)
≥a2(b−c)2+c2(a−b)2≥a2(b−c)2+c2(a−b)2
Suy ra
2b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)22b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)2
⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a
Do đó ta chỉ còn phải chứng minh
(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a
⇔∑a4+abc∑a≥2∑a2b2⇔∑a4+abc∑a≥2∑a2b2
BĐT này hiển nhiên đúng theo BĐT Schur
∑a4+abc∑a≥∑ab(a2+b2)∑a4+abc∑a≥∑ab(a2+b2)
Và BĐT AM-GM
∑ab(a2+b2)≥2∑a2b2∑ab(a2+b2)≥2∑a2b2
Kết thúc chứng minh
Đẳng thức xảy ra khi a=b=ca=b=c hoặc a=ba=b, c=0c=0 và các hoán vị.
Rút gọn biểu thức
a. 2x+2y/a2+2ab+b2 . ax-ay+bx-by/2x2-2y2
b. a+b-c/a2+2ab+b2-c2 . a2+2ab+b2+ac+bc/a2-b2
c.x3+1/x2+2x+1 . x2-1/2x2-2x+2
d. x8-1/x+1 . 1/ (x2+1) (x4+1)
e. x-y/xy+y2 - 3x+y/x2-xy . y-x/x+y
a2 c2... là em viết số mũ đó ạ. anh chị giúp em giải mấy bài này nha
\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{a\left(x-y\right)+b\left(x-y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{\left(x-y\right)\left(a+b\right)}{2\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{1}{a+b}\)
\(=\dfrac{a+b-c}{\left(a+b\right)^2-c^2}.\dfrac{\left(a+b\right)^2+c\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{a+b-c}{\left(a+b-c\right)\left(a+b+c\right)}.\dfrac{\left(a+b\right)\left(a+b+c\right)}{\left(a-b\right)\left(a+b\right)}\)
\(=\dfrac{1}{a-b}\)
\(c,\dfrac{x^3+1}{x^2+2x+1}.\dfrac{x^2-1}{2x^2-2x+2}\)
\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x^2-x+1\right)}\) \(=\dfrac{x-1}{2}\) \(d,\dfrac{x^8-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4\right)^2-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4-1\right)\left(x^4+1\right)}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x+1}.\dfrac{1}{x^2+1}\) \(=\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\) \(=x-1\) \(e,\dfrac{x-y}{xy+y^2}-\dfrac{3x+y}{x^2-xy}.\dfrac{y-x}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x\left(x-y\right)}.\dfrac{-\left(x-y\right)}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x}.\dfrac{-1}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{-3x-y}{x\left(x+y\right)}\) \(=\dfrac{x\left(x-y\right)+y\left(3x+y\right)}{xy\left(x+y\right)}\) \(=\dfrac{x^2-xy+3xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{x^2+2xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}=\dfrac{x+y}{xy}\)Mn giúp em bài này ạ !
Cho A = ( ax + by )2 ; B = ( a2 + b2) (x2 + y2)
So sánh giá trị hai biểu thức A và B biết :
a = 2 ; b = -1 ; x = \(\dfrac{8}{11}\); \(y=\dfrac{-5}{11}\)
Bài 3 Chứng minh rằng với a, b, c, x, y, z (trong đó xyz 6= 0) thỏa mãn (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2
thì a/x =b/y =c/z.
Bài tập: Cho a,b,x,y là những số khác 0. Biết rằng ( a2 + b2 ).( x2 + y2 ) = ( ax + by )2. Hãy tìm hệ thức giữa bốn số a,b,x,y.
Ta có: \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)
\(\Leftrightarrow a^2y^2-2axby+b^2x^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\)
\(\Leftrightarrow ay=bx\)
hay \(\dfrac{a}{x}=\dfrac{b}{y}\)
Ta có : \(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2abxy+b^2y^2\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\)
\(\Leftrightarrow ay-bx=0\)
\(\Leftrightarrow ay=bx\Leftrightarrow\dfrac{a}{b}=\dfrac{x}{y}\)
3. Chứng minh rằng nếu: thì
(x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2
đặt x/a=y/b=z/c=k
=>x=a.k,
y=b.k
z=c.k
=>(a^2k^2+b^2k^2+c^2k^2)(a^2+b^2+c^2)=k^2.(a^2+b^2+c^2)^2(1)
(ax+by+cz)^2=(a.a.k+b.b.k+c.c.k)^2=(a^2.k+b^2.k+c^2.k)^2
=k^2(a^2+b^2+c^2)(2)
từ (1)(2)=> nếu x/a=y/b=z/c thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2
=>
Phân tích đa thức thành nhân tử:
a) (3x - 1)2 - 16
b) (5x - 4)2 - 49x2
c) (2x + 5)2 - ( x - 9)2
d) (3x + 1)2 - 4(x - 2)2
e) 9(2x + 3)2 - 4(x + 1)2
f) 4b2c2 - (b2 + c2 - a2) 2
g) (ax + by)2 - (ay + bx)2
h) (a2 + b2 - 5)2 - 4(ab + 2)2
i) (4x2 - 3x + 18)2 - (4x2 + 3x)2
k) 9(x + y - 1)2 - 4(2x + 3y + 1)2
e) -4x2 + 12xy - 9x2 + 25
m) x2 - 2xy + y2 - 4m2 + 4mn - n2
\(a,=\left(3x-5\right)\left(3x+3\right)=3\left(x+1\right)\left(3x-5\right)\\ b,=\left(5x-4-7x\right)\left(5x-4+7x\right)=\left(-2x-4\right)\left(12x-4\right)\\ =-8\left(x+2\right)\left(x-3\right)\\ c,=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\\ =\left(x+14\right)\left(3x-4\right)\\ d,=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\\ =\left(x+5\right)\left(5x-3\right)\\ e,=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\\ =\left(4x+7\right)\left(8x+11\right)\\ f,=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\\ =\left[a^2-\left(b-c\right)^2\right]\left[\left(b+c\right)^2-a^2\right]\\ =\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\\ g,=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\\ =\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)
\(h,=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\\ =\left[\left(a-b\right)^2-9\right]\left[\left(a+b\right)^2-1\right]\\ =\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
a: \(\left(3x-1\right)^2-16\)
\(=\left(3x-1-4\right)\left(3x-1+4\right)\)
\(=\left(3x+3\right)\left(3x-5\right)\)
\(=3\left(x+1\right)\left(3x-5\right)\)
b: \(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)
\(=\left(-2x-4\right)\left(12x-4\right)\)
\(=-8\left(x+2\right)\left(3x-1\right)\)
cho 3a2 - b2 / a2 + b2 = 3/4
tính a/b
Ta có: \(\dfrac{3a^2-b^2}{a^2+b^2}=\dfrac{3}{4}\)
\(\Leftrightarrow4\cdot\left(3a^2-b^2\right)=3\left(a^2+b^2\right)\)
\(\Leftrightarrow12a^2-4b^2=3a^2+3b^2\)
\(\Leftrightarrow12a^2-3a^2=3b^2+4b^2\)
\(\Leftrightarrow9a^2=7b^2\)
\(\Leftrightarrow\dfrac{a^2}{b^2}=\dfrac{7}{9}\)
hay \(\dfrac{a}{b}=\pm\dfrac{\sqrt{7}}{3}\)