Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;
∑2a2−bcb2−bc+c2≥3
Bài 8:
Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.
Tìm GTNN của F=a2+b2+x2+y2+bx+ay
3. Chứng minh rằng nếu: thì
(x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2
Phân tích đa thức thành nhân tử:
a) (3x - 1)2 - 16
b) (5x - 4)2 - 49x2
c) (2x + 5)2 - ( x - 9)2
d) (3x + 1)2 - 4(x - 2)2
e) 9(2x + 3)2 - 4(x + 1)2
f) 4b2c2 - (b2 + c2 - a2) 2
g) (ax + by)2 - (ay + bx)2
h) (a2 + b2 - 5)2 - 4(ab + 2)2
i) (4x2 - 3x + 18)2 - (4x2 + 3x)2
k) 9(x + y - 1)2 - 4(2x + 3y + 1)2
e) -4x2 + 12xy - 9x2 + 25
m) x2 - 2xy + y2 - 4m2 + 4mn - n2
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
Bài 3 : Tìm y để giá trị của biểu thức 1 + 4y - y2 là lớn nhất
Bài 4 : Tìm x , biết : ( x3 - x2 ) - 4x2 + 8x - 4 = 0
Bài 5 : Phân tích đa thức sau thành nhân tử
A = ( a + b + c )3 - ( a + b - c )3 - ( b + c - a )3 - ( c + a - b )3
Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2
Chứng minh rằng 4(a2+1)(b2+1)(c2+1)> hoặc = 3(a+b+c)^2
Bài này nâng cao ai làm dc thì trả lời hộ
bài 3
Chứng minh các đẳng thức sau:
a) (a^2 + b^2)^2 – 4a^2b^2 = (a + b)^2(a – b)^2
b) (a^2 + b^2)(x^2 + y^2) = (ax – by)^2 + (bx + ay)^2
c) a^3 – b^3 + ab(a – b) = (a – b)(a + b)^2
d)(a – b)^3 + (b – c)^3 + (c – a)^3 = 3(a – b)(b – c)(c – a)
GIÚP MK VS
Bài 1 : Phân tích đa thức thành nhân tử
a) x2-6x-y2+9
b) 25-4x2-4xy -y2
c) x2+2xy+y2- xz-yz
d) x2-4xy+4y2-z2+4tz-4t2
Bài 2 : Phân tích đa thức thành nhân tử
a) ax2+cx2-ay+ay2-cy+cy2
b) ax^2+ay^2-bx^2-by^2+b-a
c) ac^2-ad-bc^2+cd+bd-c^3
Bài 3 : Tìm x
a) x(x-5)-4x+20=0
b) x(x+6)-7x-42=0
c) x^3-5x^2+x-5=0
d) x^4-2x^3+10x2-20x=0
Tính giá trị biểu thức:
a) M = (a - 2b)( a 2 + 2ab + 4 b 2 ) + ( 2 b - a ) 3 tại a = -1; b = 2;
b) N = (2xy - 2)(2xy + 3) - ( 1 - 2 xy ) 2 tại x = 1 2 ; y = -1.