Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Damh Thanh
Xem chi tiết
Nguyễn Đình Lân
Xem chi tiết
Ngô Nhật Minh
26 tháng 12 2022 lúc 14:04

a) A=3+32+33+34+35+36+....+328+329+330

⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔A=3.13+34.13+....+328.13

⇔A=13(3+34+....+328)⋮13(dpcm)

b) A=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔A=3.364+....+325.364

⇔A=364(3+35+310+....+325)

 

 

Trần Vũ Việt Tùng
Xem chi tiết

A = 3 + 32 + 33 +...+ 32015

A =  (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)

A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )

A = 3.211 +...+ 32011.121

A = 121.( 3 +...+ 32021)

121 ⋮ 121 ⇒ A =  121 .( 3 +...+32021)  ⋮ 121 (đpcm)

b, A              = 3 + 32 + 33 + 34 +...+ 32015

   3A             =       32 + 33 + 34 +...+ 32015 + 32016

3A - A           =   32016 - 3

    2A            = 32016 - 3

      2A    + 3  = 32016 -  3 + 3

      2A    + 3 =  32016 = 27n

       27n = 32016

       (33)n = 32016

        33n = 32016 

           3n =  2016

             n = 2016 : 3

             n = 672

c, A = 3 + 32 + ...+ 32015

    A = 3.( 1 + 3 +...+ 32014)

    3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3

   Mặt khác ta có: A = 3 + 32 +...+ 32015 

                             A =  3 + (32 +...+ 32015)

                             A = 3 + 32.( 1 +...+ 32015)

                             A = 3 + 9.(1 +...+ 32015)

                              9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9 

                                            3 không chia hết cho 9 nên 

                                A không chia hết cho 9, mà A lại chia hết cho 3 

                        Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9

    

 

 

      

Giang Minh
Xem chi tiết
Akai Haruma
6 tháng 11 2023 lúc 18:24

Lời giải:

Ta thấy

$3^2\vdots 9$

$3^3=3^2.3\vdots 9$

......

$3^{20}=3^2.3^{18}\vdots 9$

$\Rightarrow 3^2+3^3+...+3^{20}\vdots 9$

$\Rightarrow A=3+3^2+3^3+...+3^{20}$ chia hết cho 3 nhưng không chia hết cho 9

$\Rightarrow A$ không thể là số chính phương.

 

huong nguyên thi
Xem chi tiết
Sahara
20 tháng 12 2022 lúc 21:26

\(A=1+3+3^2+3^3+...+3^{101}\)
\(=>3A=3+3^2+3^3+3^4+...+3^{102}\)
\(=>3A-A=\left(3+3^2+3^3+3^4+...+3^{102}\right)-\left(1+3+3^2+3^3+...+3^{101}\right)\)
\(=>2A=3^{102}-1\)
\(=>A=\dfrac{3^{102}-1}{2}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 2 2017 lúc 14:45

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2017 lúc 11:29

A = 1 + 3 + 3 2 + 3 3 + . . . + 3 30

3 A = 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31

2A = 3A – A =  ( 3 + 3 2 + 3 3 + . . . + 3 30 + 3 31 )  –  ( 1 + 3 + 3 2 + 3 3 + . . . + 3 30 )

2A =  3 31 - 1

A =  3 31 - 1 2

Ta có  3 1 = 3 ; 3 3 = 9 ; 3 3 = 27 ; 3 4 = 81 ; 3 5 = 243

với n ≥ 0 thì  3 4 n + 3 có chữ số tận cùng là 7.Vì  31 = 4.7 + 3 nên  3 31 có chữ số tận cùng là 7. Do đó  3 31 - 1 2  có chữ số tận cùng là 3. Mà không có số nào bình phương lên có chữ số tận cùng là 3 nên A không là số chính phương.

Tìm chữ số tận cùng của A, từ đó suy ra A không phải số chính phương

Trần Thu Nha Trang
Xem chi tiết
Phongg
Xem chi tiết
Akai Haruma
9 tháng 11 2023 lúc 11:24

Lời giải:

$A=1+3+3^2+(3^3+3^4+3^5+3^6)+(3^7+3^8+3^9+3^{10})+...+(3^{87}+3^{88}+3^{89}+3^{90})$

$=13+3^3(1+3+3^2+3^3)+3^7(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$

$=13+(1+3+3^2+3^3)(3^3+3^7+...+3^{87})$

$=13+40(3^3+3^7+...+3^{87})$

$\Rightarrow A$ chia 5 dư 3

Do đó A không là scp.

HT.Phong (9A5)
9 tháng 11 2023 lúc 11:19

Ta có: 

\(A=1+3+3^2+3^3+...+3^{90}\)

\(3A=3\cdot\left(1+3+3^2+...+3^{90}\right)\)

\(3A=3+3^2+3^3+...+3^{91}\)

\(3A-A=3+3^2+3^3+...+3^{91}-1-3-3^2-...-3^{90}\)

\(2A=3^{91}-1\)

\(A=\dfrac{3^{91}-1}{2}\)

Mà: \(3^{91}-1\) không phải là số chính phương nên \(A=\dfrac{3^{91}-1}{2}\) không phải là số chính phương 

Mạnh Scar
Xem chi tiết