Tìm điều kiện xác định của phương trình \(\frac{{x - 8}}{{x - 7}} = 8 + \frac{1}{{1 - x}}\).
\(\frac{x-7}{x^2+1}=\frac{x+6}{x^2+x+1}\)
Tìm điều kiện xác định của phương trình trên
Cho phương trình: \(\frac{x}{x-1}=\frac{x+4}{x+1}\)
a) Tìm điều kiện xác định của phương trình trên
b) Giải phương trình trên.
a) ĐKXĐ: : x ≠ 1 và x ≠ -1.
b) Quy đồng và khử mẫu ta được PT: x(x + 1) = (x – 1)(x +4)
⇔ x2 +x = x2 +4x– x -4
⇔ x – 4x +x = -4 -2x = -4 x = 2(thỏa mãn ĐKXĐ)
Vậy PT có tập nghiệm S = {2}
Bài 1: Tìm điều kiện xác định của phương trình:
\(a.\frac{5-x}{x^2+6x+9}=\frac{3x+2}{x^2+6x+8}\)
\(b.\frac{x-7}{x^2+1}=\frac{x+6}{x^2+x+1}\)
Bài 2: Giải phương trình:
\(a.\frac{15x-10}{x^2+3}=0\)
\(b.\frac{x^2-4x-5}{x-5}=0\)
\(c.\frac{3x-1}{x-1}-\frac{2x+5}{x+3}-\frac{8}{x^2+2x-3}=0\)
tìm điều kiện xác định của phương trình sau 1+1/(2+x)=12/(x3+8)
\(1+\frac{1}{x+2}=\frac{12}{x^3+8}\Leftrightarrow1+\frac{1}{x+2}=\frac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)
đk : \(x\ne2\)
\(x^2-2x+4=x^2-2x+1+3=\left(x-1\right)^2+3\ge3\ne0\)( luôn đúng )
Bài 1: Tìm điều kiện xác định của phương trình:
\(a.\frac{5-x}{x^2+6x+9}=\frac{3x+2}{x^2+6x+8}\)
\(b.\frac{x-7}{x^2+1}=\frac{x+6}{x^2+x+1}\)
Bài 2: Giải phương trình:
\(a.\frac{15x-10}{x^2+3}=0\)
\(b.\frac{x^2-4x-5}{x-5}=0\)
\(c.\frac{3x-1}{x-1}-\frac{2x+5}{x+3}-\frac{8}{x^2+2x-3}=0\)
\(\frac{1}{x+2}-\frac{1}{x-4}=\frac{2x}{\left(x+2\right)\left(x+4\right)}\)
Giải phương trình, tìm điều kiện xác định
Điều kiện xác định của phương trình x-1/x-1+8=0 là
1. P=\(\frac{4x^{2\:}+4x}{\left(x+1\right)\left(2x-6\right)}\)
a) Tìm điều kiện xác định của P
b) Tìm giá trị của x để P=1
2. P=\(\frac{3}{x+2}+\frac{1}{x-2}-\frac{8}{4-x^2}\)
a) Tìm điều kiện xác định P
b) Rút gọn biểu thức P
c) Tính giá trị của x để P=4
3. P=(\(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\)):\(\frac{2x+1}{x^2+2x+1}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của P khi x=\(\frac{1}{2}\)
Các bạn giúp mình với nha, cảm ơn trước ạ
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
Xác định điều kiện và giải phương trình sau:( Giúp mk với)
\(\frac{2}{x+\frac{1}{1+\frac{x+1}{x-2}}}=\frac{6}{3x-1}\)
câu 1 :Gía trị x=1 có phải là nghiệm của phương trình hya không?Vì sao?
câu 2:Tìm điều kiện xác định của mỗi phương trình sau:
a)\(\frac{x}{x-1}\)=\(\frac{x+4}{x+1}\)
b)\(\frac{3}{x-2}\)=\(\frac{2x+3}{x-2}\)
a) ĐK: x-1 khác 0 và x+1 khác 0
<=> x khác 1 và x khác -1
b) ĐK: x-2 khác 0
<=> x khác 2