Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Xuân Thọ
Xem chi tiết
Nguyễn Đình Dũng
10 tháng 7 2015 lúc 23:22

Ta có abc chia hết cho 27 thì abc0 chia hết cho 27. 
-> a000 + bc0 chia hết cho 27 
-> 1000.a +bc0 chia hết cho 27 
-> 999.a + a + bc0 chia hết cho 27 
-> 37 x 27 x a + bca chia hết cho 27 
Do 37 x 27 x a chia hết cho 27 nên bca chia hết cho 27.

Phan Minh Sang
Xem chi tiết
Soái ca 2k6
Xem chi tiết

\(\overline{abc}⋮27\)

\(\Rightarrow\overline{abc0}⋮27\)

\(\Rightarrow\overline{1000a}+\overline{bc0}⋮27\)

\(\Rightarrow999a+a+\overline{bc0}⋮27\)

\(\Rightarrow27.37a+\overline{bca}⋮27\)

do 27.37a chia hết cho 27 suy ra \(\overline{bca}⋮27\)

Vũ Thị Vân Anh
Xem chi tiết
Nguyễn Thanh Hằng
10 tháng 3 2017 lúc 16:07

\(a\), \(abc⋮37\Rightarrow cba⋮37\)

\(Ta\) \(có\) :

\(abc⋮37\Rightarrow100a+10b+c⋮37\)

\(abc⋮37\Rightarrow10abc⋮37\)

\(\Rightarrow1000a+100b+10c⋮37\)

\(\Rightarrow999a+\left(100b+10c+a\right)⋮37\)

=> \(999a+bca⋮37\)

\(Mà\) \(999a⋮37\)

\(\Rightarrow bca⋮37\)

\(\Rightarrowđpcm\)

\(b\)) \(Lại\) \(có\) : \(bca⋮37\) \(\left(cmt\right)\)

\(\Rightarrow10bca⋮37\)

\(\Rightarrow1000b⋮100c+10a+b⋮37\)

\(\Rightarrow999b+100c+10a+b⋮37\)

\(999b⋮37\)

\(\Rightarrow999b⋮37\)

\(\Rightarrowđpcm\)

Nguyễn Thị Ngọc Trâm
Xem chi tiết
Đức Hiếu
11 tháng 7 2017 lúc 10:00

a, Ta có:

\(\overline{ab}+\overline{ba}=10a+b+10b+a=11\left(a+b\right)\)

=> ab + ba chia hết cho 11(đpcm)

b, Ta có:
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)

=> ab - ba chia hết cho 9 (a > b)(đpcm)

Chúc bạn học tốt!!!

Quang Duy
11 tháng 7 2017 lúc 10:05

c) Câu hỏi của Mai Trung Kiên - Toán lớp 6 - Học toán với OnlineMath

tham khảo nhé bạn

 Mashiro Shiina
11 tháng 7 2017 lúc 11:30

\(\overline{ab}+\overline{ba}=10a+b+10b+a=11.a+11.b=11\left(a+b\right)⋮11\rightarrowđpcm\)\(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\rightarrowđpcm\)

\(\overline{abc}⋮27\Rightarrow\overline{abc}⋮3^3\Rightarrow\overline{abc}⋮3\)

\(\Rightarrow a+b+c⋮3\Rightarrow b+c+a⋮3\)

\(\Rightarrow\overline{bca}⋮3\rightarrowđpcm\)

Phan Thùy Linh
Xem chi tiết
Lan Xa
Xem chi tiết
Kudo Shinichi
28 tháng 11 2017 lúc 21:44

Ta có : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.

Tiến Nguyễn Hoàng
22 tháng 11 lúc 20:27

Ta thấy : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.

Nguyễn Thị Việt Trà
Xem chi tiết
Moon Light
12 tháng 8 2015 lúc 14:41

Ta có:abc-bca

=100xa+10xb+c-100xb-10xc-a

=99xa-90xb-9xc

=9x(11xa-10xb-c) chia hết cho 9(1)

Do abc chia hết cho 27=>abc chia hết cho 3=>a+b+c chia hết cho 3

=>14xa+14xb+14xc chia hết cho 3

Ta có:3xa+24xb+15xc cũng chia hết cho 3

=>14xa+14xb+14xc-3xa-24xb-15xc chia hết cho a

=>11xa-10xb-c chia hết cho 3

=>(1) chia hết cho 27

=>abc-bca chia hết cho 27

Mà abc chia hết cho 27

=>bca chia hết cho 27

mai
28 tháng 12 2016 lúc 19:39

Giải:

                               abc chia hết cho 27

                           => abc0 chia hết cho 27

                           => 100a+bc0 chia hết cho 27

                           => 999a+a+bc0 chia hết cho 27

                          => 27×37a+bca chia hết cho 27

      Vì 27 chia hết cho 27 nên bca chia hết cho 27.

OoO_Nhok_Ranh_Ma_OoO_Khó...
14 tháng 10 2017 lúc 13:06

vì 27 chia hết cho 27 nên abc chia hết cho 17

cho mk nha  

thuy
Xem chi tiết
Thanh Tùng DZ
27 tháng 5 2018 lúc 8:10

abc \(⋮\)27

\(\Rightarrow\)10abc \(⋮\)27

hay abc0 \(⋮\)27

\(\Rightarrow\)1000a + bc0 \(⋮\)27

\(\Rightarrow\)999a + a + bc0 \(⋮\)27

vì 999a \(⋮\)27 nên a + bc0 \(⋮\)27 hay bca \(⋮\)27