a, Ta có:
\(\overline{ab}+\overline{ba}=10a+b+10b+a=11\left(a+b\right)\)
=> ab + ba chia hết cho 11(đpcm)
b, Ta có:
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)
=> ab - ba chia hết cho 9 (a > b)(đpcm)
Chúc bạn học tốt!!!
c) Câu hỏi của Mai Trung Kiên - Toán lớp 6 - Học toán với OnlineMath
tham khảo nhé bạn
\(\overline{ab}+\overline{ba}=10a+b+10b+a=11.a+11.b=11\left(a+b\right)⋮11\rightarrowđpcm\)\(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\rightarrowđpcm\)
\(\overline{abc}⋮27\Rightarrow\overline{abc}⋮3^3\Rightarrow\overline{abc}⋮3\)
\(\Rightarrow a+b+c⋮3\Rightarrow b+c+a⋮3\)
\(\Rightarrow\overline{bca}⋮3\rightarrowđpcm\)
c) Giải
abc \(⋮\)chia hết cho 27
=> abc0 chia hết cho 27
=> 1000a + bc0 chia hết cho 27
=> 999a + a + bc0 chia hết cho 27
=> 27 . 37a + bca chia hết cho 27
Do 27 . 37a chia hết cho 27 nên bca chia hết cho 27