Ví dụ: Cho hai đa thức: P(x) = x²-3x²-2x²-1
và Q(x) = x²-x²+x+1. Tính P(x)-Q(x).
Cho hai đa thức P(x)=\(2x^2-3x^3+x^2+3x^3-x-1-3x\); Q(x)=\(-3x^2+2x^3-x-2x^3-3x-2\) . a) Thu gọc và sắp xếp hai đa thức P(x), Q(x) theo lũy thừa giảm dần của biến. b) tính f(x)= P(x) - Q(x).Tính g(x)= P(x) - Q(x), tìm x để đa thức g(x) - (6x+1)=0
a: \(P\left(x\right)=3x^2-x-1\)
\(Q\left(x\right)=-3x^2-4x-2\)
b: \(G\left(x\right)=3x^2-x-1+3x^2+4x+2=6x^2+3x+1\)
c: Để G(x)-6x-1=0 thì 6x2-3x=0
=>3x(2x-1)=0
=>x=0 hoặc x=1/2
cho hai đa thức
P(x)=2x^4+3x^3+3x^2-x^4-4x+2-2x^2+6x
Q(x)=x^4+3x^2+5x-1-x^2-3x+2+x^3
Tính P(x)+Q(x);P(x)-Q(x) và Q(x)-P(x)
Bài 9: Cho hai đa thức: P(x)= \(-3x^2+2x+1\) Q(x)= \(-3x^2+x-2\)
a) Tính M(x)= P(x)- Q(x)
b) Tìm nghiệm của đa thức M(x)
c) Với giá trị nào của x thì P(x)=Q(x)
`a)M(x)=P(x)-Q(x)`
`=>M(x)=-3x^2+2x+1+3x^2-x+2`
`=>M(x)=x+3`
`b)` Cho `M(x)=0`
`=>x+3=0`
`=>x=-3`
Vậy nghiệm của `M(x)` là `x=-3`
`c)P(x)=Q(x)`
`=>-3x^2+2x+1=-3x^2+x-2`
`=>-3x^2+3x^2+2x-x=-2-1`
`=>x=-3`
Vậy `x=-3` thì `P(x)=Q(x)`
cho hai đa thức : P(x) = 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x và Q(x) = x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3 . tính P(x) + Q(x) .
`P(x)=`\( 2x^4 + 3x^3 + 3x^2 - x^4 - 4x + 2 - 2x^2 + 6x\)
`= (2x^4-x^4)+3x^3+(3x^2-2x^2)+(-4x+6x)+2`
`= x^4+3x^3+x^2+2x+2`
`Q(x)=`\(x^4 + 3x^2 + 5x - 1 - x^2 - 3x + 2 + x^3\)
`= x^4+x^3+(3x^2-x^2)+(5x-3x)+(-1+2)`
`= x^4+x^3+2x^2+2x+1`
`P(x)+Q(x)=(x^4+3x^3+x^2+2x+2)+(x^4+x^3+2x^2+2x+1)`
`=x^4+3x^3+x^2+2x+2+x^4+x^3+2x^2+2x+1`
`=(x^4+x^4)+(3x^3+x^3)+(x^2+2x^2)+(2x+2x)+(2+1)`
`= 2x^4+4x^3+3x^2+4x+3`
`@`\(\text{dn inactive.}\)
P(x)=x^4+3x^3+x^2+2x+2
Q(x)=x^4+x^3+2x^2+2x+1
P(x)+Q(x)=2x^4+4x^3+3x^2+4x+3
P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x
Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
P(x)+Q(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x + x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
P(x)+Q(x) = (2x4-x4+x4) + (3x3+x3) + (3x2-2x2+3x2-x2) - (4x-6x-5x+3x) +(2-1+2)
P(x)+Q(x) = 4x3+3x2-4x+3
Cho các đa thức P (x) = 5ײ–1+3x+x²–5x³ và Q(x)= 2–3x³+6x²+5x‐2x³–x a) thu gọn và sắp xếp hai đa thức P(x) , Q(x) theo lũy thừa giảm dần của biến b)Tính H(x)=P(x)+Q(x),T(x)=P(x)–Q(x) c) Tìm nghiệm của đa thức T(x) d) Tìm đa thức G(x) biết G(x)+Q(x)= -P(x)
a: P(x)=-5x^3+6x^2+3x-1
Q(x)=-5x^3+6x^2+4x+2
b: H(x)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2
=-10x^3+12x^2+7x+1
T(x)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2
=-x-3
c: T(x)=0
=>-x-3=0
=>x=-3
d: G(x)=-(-10x^3+12x^2+7x+1)
=10x^3-12x^2-7x-1
Cho hai đa thức P(x) = 5x^3 - 3x + 7 - x và Q(x) = -5x^3 + 2x - 3 + 2x - x^2 - 2
a) thu gọn hai đa thức P(x) và Q(x). tính P(x) + Q(x) và P(x) - Q(x)
b) Tìm nghiệm của đa thức P(x) + Q(x)
a, \(P\left(x\right)=5x^3-3x+7-x\)
\(=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\)
\(=-5x^3-x^2+4x-5\)
Ta có \(P\left(x\right)+Q\left(x\right)=-x^2+2\)
\(P\left(x\right)-Q\left(x\right)=10x^3+x^2-8x+12\)
b, \(P\left(x\right)+Q\left(x\right)=0\)
\(\Leftrightarrow-x^2+2=0\)
\(\Leftrightarrow-x^2=-2\)
\(\Leftrightarrow x^2=2=\left(\pm\sqrt{2}\right)^2\)
\(\Rightarrow x=\pm\sqrt{2}\)
Vậy \(x=\pm\sqrt{2}\)
P(x) = 5x3 - 3x + 7 - x
= 5x3 - 4x + 7
Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2
= -5x3 - x2 + 4x - 5
P(x) + Q(x) = ( 5x3 - 4x + 7 ) + ( -5x3 - x2 + 4x - 5 )
= 5x3 - 4x + 7 - 5x3 - x2 + 4x - 5
= -x2 + 2
P(x) - Q(x) = ( 5x3 - 4x + 7 ) - ( -5x3 - x2 + 4x - 5 )
= 5x3 - 4x + 7 + 5x3 + x2 - 4x + 5
= 10x3 + x2 - 8x + 12
Đặt H(x) = P(x) + Q(x)
=> H(x) = -x2 + 2
H(x) = 0 <=> -x2 + 2 = 0
<=> -x2 = -2
<=> x2 = 2
<=> x = \(\pm\sqrt{2}\)
Vậy nghiệm của đa thức là \(\pm\sqrt{2}\)
Cho hai đa thức: P(x) = x ^ 3 + 2x ^ 2 - 3x + 2020 Q(x) = 2x ^ 3 - 3x ^ 2 + 4x + 2021 a) Tính P(x) + O(x) b) Tính đa thức K(x) = O(x) - P(x)
a)
P(x) + O(x) = \(\left(x^3+2x^2-3x+2020\right)+\left(2x^3-3x^2+4x+2021\right)\)
P(x) + O(x) = \(3x^3-x^2+x+4041\)
b)
P(x) - O(x) = \(x^3+2x^2-3x+2020-2x^3+3x^2-4x-2021\)
P(x) - O(x) = \(-x^3+5x^2-7x-1\)
Cho hai đa thức: P(x)=x^2+4x+9-2x^3 Q(x) = 2x^3-3x+2x^2-9
a) Sắp xếp hai đa thức P(x), Q(x) theo lũy thừa giảm dần của biến
b) Tính M(x)= Q(x) + P(x)
c) Chứng tỏ x= -1/3 là nghiệm của M(x)
a) \(P\left(x\right)=x^2+4x+9-2x^3\)\(=-2x^3+x^2+4x+9\)
\(Q\left(x\right)=2x^3-3x+2x^2-9=2x^3+2x^2-3x-9\)
b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=\left(-2x^3+x^2+4x+9\right)+\left(2x^3+2x^2-3x-9\right)\)
\(=\left(-2x^3+2x^3\right)+\left(x^2+2x^2\right)+\left(4x-3x\right)+\left(9-9\right)\)
\(=3x^2+x\)
c) Ta có: \(M\left(x\right)=3x^2+x\)
\(\Rightarrow M\left(-\dfrac{1}{3}\right)=3.\left(-\dfrac{1}{3}\right)^2+\left(-\dfrac{1}{3}\right)=\dfrac{1}{3}+\left(-\dfrac{1}{3}\right)=0\)
Vậy \(x=-\dfrac{1}{3}\) là nghiệm của đa thức \(M\left(x\right)\)
Cho hai đa thức : P(x) = x^3-2x^2+x-2 Q(x) = 2x^3 - 4x^2+ 3x – 56
a) Tính P(x) - Q(x) b) Chứng tỏ rằng x=2 là nghiệm của cả hai đa thức P(x) và Q(x)
` P(x) = x^3-2x^2+x-2`
`Q(x) = 2x^3 - 4x^2+ 3x – 56`
a) `P(x) -Q(x)`
`= x^3-2x^2+x-2 - 2x^3 +4x^2 -3x +56`
`=(x^3-2x^3) +(4x^2-2x^2) +(x-3x) +(-2+56)`
`= -x^2 +2x^2 -2x +54`
b) Thay `x=2` vào `P(x)` ta đc
`P(2) = 2^3 -2*2^2 +2-2`
`= 8-8+2-2 =0`
Vậy chứng tỏ `x=2` là nghiệm của đa thức `P(x)`
Thay `x=2` vào `Q(x)` ta đc
`Q(2) = 2*2^3 -4*2^2 +3*2-56`
`=16 -16+6-56`
`= -50`
Vậy chứng tỏ `x=2` là ko nghiệm của đa thức `Q(x)`
Cho các đa thức:
P(x) = \(3x^2-5+x^4-x+1\)
Q(x) =\(6-2x+3x^3+x^4-3x^5\)
Tính P(x) - Q(x) và Q(x) - P(x). Có nhận xét gì về các hệ số của hai đa thức tìm được ?
\(P\left(x\right)-Q\left(x\right)\)
\(=x^3+3x^3-x-4-x^4-3x^3+3x^5+2x-6\)
\(=3x^5+x-10\)
\(P\left(x\right)-Q\left(x\right)=3x^2-5+x^4-x+1-6+2x-3x^3-x^4+3x^5\\ =3x^5-3x^3+3x^2+x-10\\ Q\left(x\right)-P\left(x\right)=6-2x+3x^3+x^4-3x^5-3x^2+5-x^4+x-1=-3x^5+3x^3-3x^2-x+10\)
Đó là 2 biểu thức đối nhau
Các hệ số của 2 đa thức đối nhau