Tìm các cặp số nguyên(x:y) thỏa mãn:
\(x^2+x=y^2\)
Tìm các cặp số nguyên (x:y) thỏa mãn phương trình\(2x^2+2y^2-2xy+y-x-10=0\)
\(2x^2+2y^2-2xy+y-x-10=0\)
\(\Leftrightarrow2x^2-x\left(2y+1\right)+2y^2+y-10=0\)
Coi pt trên là pt bậc 2 ẩn x
\(\Delta_x=\left(2y+1\right)^2-8\left(2y^2+y-10\right)\)
\(=4y^2+4y+1-16y^2-8y+80\)
\(=-12y^2-4y+81\)
Để pt có nghiệm nguyên thì \(\hept{\begin{cases}\Delta_x\ge0\\\Delta_x=k^2\left(k\inℕ^∗\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-12y^2-4y+81\ge0\\-12y^2-4y+81=k^2\end{cases}}\)
Giải nốt đi , đến đây dễ r
Tìm cặp số (x:y) nguyên dương thỏa mãn 7(x-1)2=23-y2
Tìm các cặp số nguyên (x:y) thỏa mãn \(x^2+5y^2-4xy+2x+4=0\)
x^2 +5y^2 -4xy +2x +4 =0
x^2 +4y^2 -4xy +y^2 +4y+4 +2x -4y =0
(x -2y)^2 +2(x-2y)+(y+2)^2 =0
(x-2y+1)^2 +(y+2)^2 =1
do x,y nguyên nên x-2y+1; y+2 nguyên
mà (x-2y+1)^2 ;(y+2)^2 lơn hơn hoặc bằng 0 với mọi x,y
nên ta có 2TH
TH1: (x-2y+1)^2 =1 ;(y+2)^2 =0
TH2: (x-2y+1)^2 =0 ;(y+2)^2 =1
bạn tự giải doạn cuối nhé
k cho mình nhé
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn: \(x^2+x+3=y^2\)
Nếu \(x< -3\) thì \(x^2+x+3< x^2\) và \(x^2+x+3>\left(x+1\right)^2\), vô lý.
Nếu \(x>2\) thì \(x^2+x+3>x^2\) và \(x^2+x+3< \left(x+1\right)^2\), cũng vô lý.
Do đó \(x\in\left\{-3;-2;-1;0;1;2\right\}\)
Thử từng giá trị, ta thấy \(\left(x;y\right)\in\left\{\left(-3;3\right);\left(-3;-3\right)\right\}\) là các cặp số thỏa ycbt.
tìm các cặp số nguyên (x;y) nguyên thỏa mãn x^2-xy+y+1
\(x^2-xy+y+1=0\)
\(\Leftrightarrow\left(x^2-1\right)-y\left(x-1\right)+2=0\)
\(\Leftrightarrow\left(x+1-y\right)\left(x-1\right)=-2\)
\(\Rightarrow x-1;x+1-y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)
x - 1 | 1 | -1 | 2 | -2 |
x + 1 - y | 2 | -2 | 1 | -1 |
x | 2 | 0 | 3 | -1 |
y | 1 | 3 | 3 | 1 |
bảng mình xét nhầm nhé phải là như này :
x - 1 | 1 | -1 | 2 | -2 |
x + 1 - y | -2 | 2 | -1 | 1 |
x | 2 | 0 | 3 | -1 |
y | 5 | -1 | 5 | 1 |
Tìm tất cả các cặp số nguyên x, y thỏa mãn: y.(x2 + 2) = x + 2
tìm tất cả các cặp số nguyên(x,y) thỏa mãn x ^ 2 - 3xy + 2 = y
\(x^2-3xy+2=y\)
\(\Rightarrow x^2+2=y\left(3x+1\right)\left(1\right)\)
\(\Rightarrow\left(x^2+2\right)⋮\left(3x+1\right)\)
\(\Rightarrow\left(9x^2+18\right)⋮\left(3x+1\right)\)
\(\Rightarrow\left[\left(9x^2-1\right)+19\right]⋮\left(3x+1\right)\)
Ta có \(9x^2-1=\left(3x+1\right)\left(3x-1\right)⋮\left(3x+1\right)\)
\(\Rightarrow19⋮\left(3x+1\right)\) nên \(3x+1\inƯ\left(19\right)\)
Lập bảng:
3x+1 | 19 | 1 | -19 | -1 |
x | 6 | 0 | \(\dfrac{-20}{3}\left(l\right)\) | \(\dfrac{-2}{3}\left(l\right)\) |
Với \(x=6\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{6^2+2}{3.6+1}=2\)
Với \(x=0\). (1) \(\Rightarrow y=\dfrac{x^2+2}{3x+1}=\dfrac{0^2+2}{3.0+1}=2\)
Vậy các cặp số (x;y) thỏa điều kiện ở đề bài là \(\left(6;2\right),\left(0;2\right)\)
TÌm các cặp số nguyên (x;y) thỏa mãn 1/x + 1/y =2